Aerodynamic Optimisation of Modern Transport Wing using Efficient Variable Fidelity Shape Parameterisation

Generic wrap-around aerodynamic shape optimisation technology is presented, and applied to a modern commercial aircraft wing in transonic cruise. The wing geometry is parameterised by a novel domain element method, which uses efficient global interpolation functions to deform both the surface geometry and corresponding CFD volume mesh. The technique also provides a method that allows geometries to be parameterised at various levels, ranging from global three-dimensional planform alterations to detailed local surface changes. Combining all levels of parameterisation allows for free-form design control with very few design variables. The method provides an efficient combined shape parameterisation and high quality mesh deformation technique that is totally independent of mesh type (structured or unstructured). Optimisation independence from the flow solver is achieved by obtaining sensitivity information for an advanced gradient-based optimiser (FSQP) by finite-differences. Results are presented for highly constrained optimisations of the modern aircraft wing in transonic cruise, using three levels of parameterisation (number of design variables), to assess the effect of parameterisation fidelity on the optimisation. The highest fidelity optimisation results in a totally shock-free geometry with an associated substantial reduction in drag.

[1]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[2]  M. F. Rubinstein,et al.  Automated Structural Synthesis Using a Reduced Number of Design Coordinates , 1973 .

[3]  Ning Qin,et al.  AERODYNAMIC STUDIES FOR BLENDED WING BODY AIRCRAFT , 2002 .

[4]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[5]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[6]  Christian B Allen,et al.  Towards automatic structured multiblock mesh generation using improved transfinite interpolation , 2008 .

[7]  A. Le Moigne,et al.  Parallel adjoint-based optimisation of a blended wing body aircraft with shock control bumps , 2007, The Aeronautical Journal (1968).

[8]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[9]  Patrice Castonguay,et al.  Effect of Shape Parameterization on Aerodynamic Shape Optimization , 2007 .

[10]  C. Allen,et al.  Unified fluid–structure interpolation and mesh motion using radial basis functions , 2008 .

[11]  Armando Vavalle,et al.  Spanwise Lift Distribution for Blended Wing Body Aircraft. , 2005 .

[12]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[13]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[14]  B. Kulfan A Universal Parametric Geometry Representation Method - "CST" , 2007 .

[15]  H. Sobieczky Parametric Airfoils and Wings , 1999 .

[16]  A. Tits,et al.  User's Guide for FSQP Version 2.0 A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates , 1990 .

[17]  E. Robert,et al.  Rapid Airplane Parametric Input Design (RAPID) , 1995 .

[18]  Christian B Allen,et al.  Multigrid convergence of inviscid fixed‐ and rotary‐wing flows , 2002 .

[19]  A. Tits,et al.  Nonmonotone line search for minimax problems , 1993 .

[20]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[21]  Christian B Allen,et al.  Unified Approach to CFD-CSD Interpolation and Mesh Motion using Radial Basis Functions , 2007 .

[22]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[23]  John E. Bussoletti,et al.  "Fundamental" Parameteric Geometry Representations for Aircraft Component Shapes , 2006 .

[24]  Christian B Allen,et al.  Convergence of steady and unsteady formulations for inviscid hovering rotor solutions , 2003 .

[25]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[26]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[27]  Christian B Allen,et al.  Parallel simulation of unsteady hovering rotor wakes , 2006 .

[28]  Christian B Allen,et al.  Efficient Mesh Motion using Radial Basis Functions with Data Reduction Algorithms , 2008 .

[29]  Jamshid A. Samareh,et al.  Status and Future of Geometry Modeling and Grid Generation for Design and Optimization , 1999 .

[30]  Christian B Allen,et al.  Parallel universal approach to mesh motion and application to rotors in forward flight , 2007 .

[31]  Thomas Rendall,et al.  Development of Generic CFD-Based Aerodynamic Optimisation Tools for Helicopter Rotor Blades , 2007 .

[32]  Malcolm I. G. Bloor,et al.  Efficient parametrization of generic aircraft geometry , 1995 .

[33]  Ijaz H. Parpia,et al.  van Leer flux vector splitting in moving coordinates , 1988 .

[34]  Garret N. Vanderplaats,et al.  Numerical Optimization Techniques for Engineering Design: With Applications , 1984 .

[35]  Patrice Castonguay,et al.  SURVEY OF SHAPE PARAMETERIZATION TECHNIQUES AND ITS EFFECT ON THREE-DIMENSIONAL AERODYNAMIC SHAPE OPTIMIZATION , 2007 .

[36]  Christian B Allen,et al.  An unsteady multiblock multigrid scheme for lifting forward flight rotor simulation , 2004 .