Classical and Quantum Superintegrable Systems with N-th Order Integrals of Motion
暂无分享,去创建一个
[1] A. Marchesiello,et al. Third-order superintegrable systems with potentials satisfying nonlinear equations , 2015, 1501.00470.
[2] J. Negro,et al. Heisenberg-type higher order symmetries of superintegrable systems separable in Cartesian coordinates , 2014, 1411.6216.
[3] A. Enciso,et al. An exactly solvable deformation of the Coulomb problem associated with the Taub-NUT metric , 2014, 1407.1401.
[4] W. Miller,et al. Classical and quantum superintegrability with applications , 2013, 1309.2694.
[5] Robert Milson,et al. Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials , 2013, 1306.5143.
[6] D. Riglioni. Classical and quantum higher order superintegrable systems from coalgebra symmetry , 2013, 1304.4918.
[7] C. Quesne,et al. New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials , 2012, 1211.2957.
[8] P. Winternitz,et al. Third-order superintegrable systems separable in parabolic coordinates , 2012, 1204.0700.
[9] I. Marquette. Classical ladder operators, polynomial Poisson algebras and classification of superintegrable systems , 2011, 1109.4471.
[10] A. Enciso,et al. Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the St , 2011, 1103.4554.
[11] A. Enciso,et al. Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability , 2011, 1102.5494.
[12] P. Winternitz,et al. A nonseparable quantum superintegrable system in 2D real Euclidean space , 2011, 1101.5405.
[13] M. Przybylska,et al. On algebraic construction of certain integrable and super-integrable systems , 2010, 1011.3249.
[14] W. Miller,et al. Superintegrability and higher-order constants for classical and quantum systems , 2010, 1002.2665.
[15] I. Marquette. An infinite family of superintegrable systems from higher order ladder operators and supersymmetry , 2010, 1008.3073.
[16] H. Yoshida,et al. Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces , 2010, 1004.3854.
[17] P. Winternitz,et al. An infinite family of superintegrable deformations of the Coulomb potential , 2010, 1003.5230.
[18] C. Daskaloyannis,et al. Quadratic algebras for three-dimensional superintegrable systems , 2010 .
[19] P. Winternitz,et al. Third-order superintegrable systems separating in polar coordinates , 2010, 1002.1989.
[20] C. Quesne. EXCHANGE OPERATOR FORMALISM FOR AN INFINITE FAMILY OF SOLVABLE AND INTEGRABLE QUANTUM SYSTEMS ON A PLANE , 2009, 0910.2151.
[21] P. Winternitz,et al. Periodic orbits for an infinite family of classical superintegrable systems , 2009, 0910.0299.
[22] I. Marquette. Superintegrability and higher order polynomial algebras , 2009, 0908.4399.
[23] I. Marquette. Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics II:Painleve transcendent potentials , 2008, 0811.1568.
[24] A. Hinze,et al. Second order superintegrable systems in conformally flat spaces . 2 : The classical 2 D Stäckel transform , 2009 .
[25] E. Kalnins. Second order superintegrable systems in conformally flat spaces . V : 2 D and 3 D quantum systems , 2009 .
[26] C. Quesne. Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry , 2008, 0807.4087.
[27] P. Winternitz,et al. Superintegrable systems with third-order integrals of motion , 2007, 0711.4783.
[28] C. Daskaloyannis,et al. Quantum superintegrable systems with quadratic integrals on a two dimensional manifold , 2007 .
[29] W. Miller,et al. Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory , 2006 .
[30] S. Gravel. Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.
[31] W. Miller,et al. Superintegrable systems in Darboux spaces , 2003, math-ph/0307039.
[32] S. Gravel,et al. Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.
[33] Miguel A. Rodriguez,et al. Quantum superintegrability and exact solvability in n dimensions , 2001, math-ph/0110018.
[34] P. Winternitz,et al. Superintegrability in a two-dimensional space of nonconstant curvature , 2001, math-ph/0108015.
[35] Ilpo Laine,et al. Painlev'e di erential equations in the complex plane , 2002 .
[36] P. Tempesta,et al. Exact solvability of superintegrable systems , 2000, hep-th/0011209.
[37] C. Daskaloyannis. Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems , 2000, math-ph/0003017.
[38] Valerii I. Gromak,et al. Bäcklund Transformations of Painlevé Equations and Their Applications , 1999 .
[39] J. Hietarinta. Pure quantum integrability , 1997, solv-int/9708010.
[40] M. Moshinsky,et al. The harmonic oscillator in modern physics , 1996 .
[41] L. Vinet,et al. Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians , 1995 .
[42] A. Zhedanov,et al. Quadratic algebras and dynamics in curved spaces. II. The Kepler problem , 1992 .
[43] A. Zhedanov,et al. Quadratic algebras and dynamics in curved spaces. I. Oscillator , 1992 .
[44] N. Evans. Group theory of the Smorodinsky-Winternitz system , 1991 .
[45] N. Evans. Super-integrability of the Winternitz system , 1990 .
[46] Evans,et al. Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[47] J. Hietarinta. Classical versus quantum integrability , 1984 .
[48] P. Winternitz,et al. A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .
[49] Y. Smorodinskii,et al. SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .
[50] P. Winternitz,et al. ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .
[51] E. L. Hill,et al. On the Problem of Degeneracy in Quantum Mechanics , 1940 .
[52] V. Bargmann,et al. Zur Theorie des Wasserstoffatoms , 1936 .