Classical and Quantum Superintegrable Systems with N-th Order Integrals of Motion

[1]  A. Marchesiello,et al.  Third-order superintegrable systems with potentials satisfying nonlinear equations , 2015, 1501.00470.

[2]  J. Negro,et al.  Heisenberg-type higher order symmetries of superintegrable systems separable in Cartesian coordinates , 2014, 1411.6216.

[3]  A. Enciso,et al.  An exactly solvable deformation of the Coulomb problem associated with the Taub-NUT metric , 2014, 1407.1401.

[4]  W. Miller,et al.  Classical and quantum superintegrability with applications , 2013, 1309.2694.

[5]  Robert Milson,et al.  Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials , 2013, 1306.5143.

[6]  D. Riglioni Classical and quantum higher order superintegrable systems from coalgebra symmetry , 2013, 1304.4918.

[7]  C. Quesne,et al.  New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials , 2012, 1211.2957.

[8]  P. Winternitz,et al.  Third-order superintegrable systems separable in parabolic coordinates , 2012, 1204.0700.

[9]  I. Marquette Classical ladder operators, polynomial Poisson algebras and classification of superintegrable systems , 2011, 1109.4471.

[10]  A. Enciso,et al.  Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the St , 2011, 1103.4554.

[11]  A. Enciso,et al.  Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability , 2011, 1102.5494.

[12]  P. Winternitz,et al.  A nonseparable quantum superintegrable system in 2D real Euclidean space , 2011, 1101.5405.

[13]  M. Przybylska,et al.  On algebraic construction of certain integrable and super-integrable systems , 2010, 1011.3249.

[14]  W. Miller,et al.  Superintegrability and higher-order constants for classical and quantum systems , 2010, 1002.2665.

[15]  I. Marquette An infinite family of superintegrable systems from higher order ladder operators and supersymmetry , 2010, 1008.3073.

[16]  H. Yoshida,et al.  Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces , 2010, 1004.3854.

[17]  P. Winternitz,et al.  An infinite family of superintegrable deformations of the Coulomb potential , 2010, 1003.5230.

[18]  C. Daskaloyannis,et al.  Quadratic algebras for three-dimensional superintegrable systems , 2010 .

[19]  P. Winternitz,et al.  Third-order superintegrable systems separating in polar coordinates , 2010, 1002.1989.

[20]  C. Quesne EXCHANGE OPERATOR FORMALISM FOR AN INFINITE FAMILY OF SOLVABLE AND INTEGRABLE QUANTUM SYSTEMS ON A PLANE , 2009, 0910.2151.

[21]  P. Winternitz,et al.  Periodic orbits for an infinite family of classical superintegrable systems , 2009, 0910.0299.

[22]  I. Marquette Superintegrability and higher order polynomial algebras , 2009, 0908.4399.

[23]  I. Marquette Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics II:Painleve transcendent potentials , 2008, 0811.1568.

[24]  A. Hinze,et al.  Second order superintegrable systems in conformally flat spaces . 2 : The classical 2 D Stäckel transform , 2009 .

[25]  E. Kalnins Second order superintegrable systems in conformally flat spaces . V : 2 D and 3 D quantum systems , 2009 .

[26]  C. Quesne Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry , 2008, 0807.4087.

[27]  P. Winternitz,et al.  Superintegrable systems with third-order integrals of motion , 2007, 0711.4783.

[28]  C. Daskaloyannis,et al.  Quantum superintegrable systems with quadratic integrals on a two dimensional manifold , 2007 .

[29]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory , 2006 .

[30]  S. Gravel Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.

[31]  W. Miller,et al.  Superintegrable systems in Darboux spaces , 2003, math-ph/0307039.

[32]  S. Gravel,et al.  Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.

[33]  Miguel A. Rodriguez,et al.  Quantum superintegrability and exact solvability in n dimensions , 2001, math-ph/0110018.

[34]  P. Winternitz,et al.  Superintegrability in a two-dimensional space of nonconstant curvature , 2001, math-ph/0108015.

[35]  Ilpo Laine,et al.  Painlev'e di erential equations in the complex plane , 2002 .

[36]  P. Tempesta,et al.  Exact solvability of superintegrable systems , 2000, hep-th/0011209.

[37]  C. Daskaloyannis Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems , 2000, math-ph/0003017.

[38]  Valerii I. Gromak,et al.  Bäcklund Transformations of Painlevé Equations and Their Applications , 1999 .

[39]  J. Hietarinta Pure quantum integrability , 1997, solv-int/9708010.

[40]  M. Moshinsky,et al.  The harmonic oscillator in modern physics , 1996 .

[41]  L. Vinet,et al.  Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians , 1995 .

[42]  A. Zhedanov,et al.  Quadratic algebras and dynamics in curved spaces. II. The Kepler problem , 1992 .

[43]  A. Zhedanov,et al.  Quadratic algebras and dynamics in curved spaces. I. Oscillator , 1992 .

[44]  N. Evans Group theory of the Smorodinsky-Winternitz system , 1991 .

[45]  N. Evans Super-integrability of the Winternitz system , 1990 .

[46]  Evans,et al.  Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[47]  J. Hietarinta Classical versus quantum integrability , 1984 .

[48]  P. Winternitz,et al.  A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .

[49]  Y. Smorodinskii,et al.  SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .

[50]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .

[51]  E. L. Hill,et al.  On the Problem of Degeneracy in Quantum Mechanics , 1940 .

[52]  V. Bargmann,et al.  Zur Theorie des Wasserstoffatoms , 1936 .