Fault isolation for a complex decentralized waste water treatment facility

[1]  Pierre Perron,et al.  Inference on locally ordered breaks in multiple regressions , 2017 .

[2]  Si-Zhao Joe Qin,et al.  Survey on data-driven industrial process monitoring and diagnosis , 2012, Annu. Rev. Control..

[3]  Douglas C. Montgomery,et al.  Some Current Directions in the Theory and Application of Statistical Process Monitoring , 2014 .

[4]  Jun Li,et al.  Construction of an efficient multivariate dynamic screening system , 2017, Qual. Reliab. Eng. Int..

[5]  Pavel Krupskii,et al.  Copula-based monitoring schemes for non-Gaussian multivariate processes , 2019, Journal of Quality Technology.

[6]  Ping Wu,et al.  Fault isolation based on Bayesian fused lasso , 2017, 2017 Chinese Automation Congress (CAC).

[7]  Tzahi Y Cath,et al.  Data-driven performance analyses of wastewater treatment plants: A review. , 2019, Water research.

[8]  Tzahi Y. Cath,et al.  Multistate multivariate statistical process control , 2018 .

[9]  Jiahua Chen,et al.  Extended Bayesian information criteria for model selection with large model spaces , 2008 .

[10]  Fugee Tsung,et al.  A Variable-Selection-Based Multivariate EWMA Chart for Process Monitoring and Diagnosis , 2012 .

[11]  Jun Li,et al.  Nonparametric dynamic screening system for monitoring correlated longitudinal data , 2016 .

[12]  Hao Yan,et al.  Real-Time Monitoring of High-Dimensional Functional Data Streams via Spatio-Temporal Smooth Sparse Decomposition , 2018, Technometrics.

[13]  P. Perron,et al.  Estimating and Testing Structural Changes in Multivariate Regressions , 2007 .

[14]  S Marsili-Libelli,et al.  Real-time fault detection and isolation in biological wastewater treatment plants. , 2009, Water science and technology : a journal of the International Association on Water Pollution Research.

[15]  Peihua Qiu,et al.  Multivariate Statistical Process Control Using LASSO , 2009 .

[16]  A. Hering,et al.  Comparison of linear and nonlinear dimension reduction techniques for automated process monitoring of a decentralized wastewater treatment facility , 2016, Stochastic Environmental Research and Risk Assessment.

[17]  Nicolas Vayatis,et al.  A review of change point detection methods , 2018, ArXiv.

[18]  T. McAvoy,et al.  Batch tracking via nonlinear principal component analysis , 1996 .

[19]  Jian Huang,et al.  A Selective Review of Group Selection in High-Dimensional Models. , 2012, Statistical science : a review journal of the Institute of Mathematical Statistics.

[20]  Wei Jiang,et al.  A LASSO-Based Diagnostic Framework for Multivariate Statistical Process Control , 2011, Technometrics.

[21]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[22]  P. Perron,et al.  Estimating restricted structural change models , 2006 .

[23]  Stelios Psarakis,et al.  Multivariate statistical process control charts: an overview , 2007, Qual. Reliab. Eng. Int..

[24]  Marian Scott Increasing population and the environment: how do the numbers stack up? , 2012 .

[25]  Dongdong Xiang,et al.  Surveillance of cardiovascular diseases using a multivariate dynamic screening system , 2015, Statistics in medicine.

[26]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[27]  Dongdong Xiang,et al.  Univariate Dynamic Screening System: An Approach For Identifying Individuals With Irregular Longitudinal Behavior , 2014, Technometrics.

[28]  Giovanna Capizzi,et al.  Phase I Distribution-Free Analysis of Multivariate Data , 2013, Technometrics.

[29]  R. Tibshirani,et al.  The solution path of the generalized lasso , 2010, 1005.1971.

[30]  Pekka Malo,et al.  Non-parametric Structural Change Detection in Multivariate Systems , 2018, 1805.08512.

[31]  Peter A Vanrolleghem,et al.  Adaptive Consensus Principal Component Analysis for On-Line Batch Process Monitoring , 2004, Environmental monitoring and assessment.

[32]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[33]  Max G'Sell,et al.  Exact post-selection inference for the generalized lasso path , 2018 .

[34]  Wei Jiang,et al.  High-Dimensional Process Monitoring and Fault Isolation via Variable Selection , 2009 .

[35]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .