Learning Preferences with Co-Regularized Least-Squares
暂无分享,去创建一个
Tapio Salakoski | Tapio Pahikkala | Fabian Gieseke | Evgeni Tsivtsivadze | Jorma Boberg | T. Salakoski | F. Gieseke | J. Boberg | T. Pahikkala | Evgeni Tsivtsivadze
[1] Avrim Blum,et al. The Bottleneck , 2021, Monopsony Capitalism.
[2] Yoram Singer,et al. Log-Linear Models for Label Ranking , 2003, NIPS.
[3] Jari Björne,et al. BioInfer: a corpus for information extraction in the biomedical domain , 2007, BMC Bioinformatics.
[4] Tapio Salakoski,et al. Regularized Least-Squares for Parse Ranking , 2005, IDA.
[5] Vikas Sindhwani,et al. An RKHS for multi-view learning and manifold co-regularization , 2008, ICML '08.
[6] Bernhard Schölkopf,et al. A Generalized Representer Theorem , 2001, COLT/EuroCOLT.
[7] T. Poggio,et al. Regularized Least-Squares Classification 133 In practice , although , 2007 .
[8] Tapio Salakoski,et al. A Sparse Regularized Least-Squares Preference Learning Algorithm , 2008, SCAI.
[9] T. Salakoski,et al. Learning to Rank with Pairwise Regularized Least-Squares , 2007 .
[10] T. Raghavan,et al. Nonnegative Matrices and Applications , 1997 .
[11] Tapio Salakoski,et al. Graph Kernels versus Graph Representations : a Case Study in Parse Ranking , 2006 .
[12] F. Girosi,et al. Networks for approximation and learning , 1990, Proc. IEEE.
[13] Eyke Hüllermeier,et al. Preference Learning , 2005, Künstliche Intell..
[14] Ulf Brefeld,et al. Co-EM support vector learning , 2004, ICML.
[15] David S. Rosenberg,et al. The rademacher complexity of coregularized kernel classes , 2007 .
[16] Alex Pothen,et al. PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .
[17] Klaus Obermayer,et al. Support vector learning for ordinal regression , 1999 .
[18] Mikhail Belkin,et al. A Co-Regularization Approach to Semi-supervised Learning with Multiple Views , 2005 .
[19] Gene H. Golub,et al. Matrix computations , 1983 .