Strong resolvability in product graphs

En aquesta tesi s'estudia la dimensio metrica forta de grafs producte. Els resultats mes importants de la tesi se centren en la recerca de relacions entre la dimensio metrica forta de grafs producte i la dels seus factors, juntament amb altres invariants d'aquests factors. Aixi, s'han estudiat els seguents productes de grafs: producte cartesia, producte directe, producte fort, producte lexicografic, producte corona, grafs unio, suma cartesiana, i producte arrel, d'ara endavant "grafs producte". Hem obtingut formules tancades per la dimensio metrica forta de diverses families no trivials de grafs producte que inclouen, per exemple, grafs bipartits, grafs vertexs transitius, grafs hamiltonians, arbres, cicles, grafs complets, etc, i hem donat fites inferiors i superiors generals, expressades en termes d'invariants dels grafs factors, com ara, l'ordre, el nombre d'independencia, el nombre de cobriment de vertexs, el nombre d'aparellament, la connectivitat algebraica, el nombre de clique, i el nombre de clique lliure de bessons. Tambe hem descrit algunes classes de grafs producte, on s'assoleixen aquestes fites. Es conegut que el problema de trobar la dimensio metrica forta d'un graf connex es pot transformar en el problema de trobar el nombre de cobriment de vertexs de la seva corresponent graf de resolubilitat forta. En aquesta tesi hem aprofitat aquesta eina i hem trobat diverses relacions entre el graf de resolubilitat forta de grafs producte i els grafs de resolubilitat forta dels seus factors. Per exemple, es notable destacar que el graf de resolubilitat forta del producte cartesia de dos grafs es isomorf al producte directe dels grafs de resolubilitat forta dels seus factors.

[1]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[2]  V. G. Vizing The cartesian product of graphs , 1963 .

[3]  Edy Tri Baskoro,et al.  The metric dimension of the lexicographic product of graphs , 2013, Discret. Math..

[4]  Eunjeong Yi On strong metric dimension of graphs and their complements , 2013 .

[5]  Jozef Kratica,et al.  Variable neighborhood search for the strong metric dimension problem , 2012, Electron. Notes Discret. Math..

[6]  Marsha F. Foregger Hamiltonian decompositions of products of cycles , 1978, Discret. Math..

[7]  Bostjan Bresar,et al.  Edge-connectivity of strong products of graphs , 2007, Discuss. Math. Graph Theory.

[8]  Vladimir R. Rosenfeld The independence polynomial of rooted products of graphs , 2010, Discret. Appl. Math..

[9]  Brendan D. McKay,et al.  A new graph product and its spectrum , 1978, Bulletin of the Australian Mathematical Society.

[10]  Dennis P. Geller,et al.  The chromatic number and other functions of the lexicographic product , 1975 .

[11]  Sylvain Gravier,et al.  On graphs having a V\{x} set as an identifying code , 2007, Discret. Math..

[12]  Claude Tardif,et al.  (GTN LIV:6) HEDETNIEMI'S CONJECTURE, 40 YEARS LATER , 2008 .

[13]  Bostjan Bresar,et al.  On the connectivity of the direct product of graphs , 2008, Australas. J Comb..

[14]  Ioan Tomescu Discrepancies between metric dimension and partition dimension of a connected graph , 2008, Discret. Math..

[15]  Lali Barrière,et al.  The hierarchical product of graphs , 2009, Discret. Appl. Math..

[16]  O. Ore Theory of Graphs , 1962 .

[17]  Gary Chartrand,et al.  The metric chromatic number of a graph , 2009, Australas. J Comb..

[18]  Noga Alon,et al.  The Shannon capacity of a graph and the independence numbers of its powers , 2006, IEEE Transactions on Information Theory.

[19]  D. West Introduction to Graph Theory , 1995 .

[20]  Uriel Feige,et al.  On Limited versus Polynomial Nondeterminism , 1997, Chic. J. Theor. Comput. Sci..

[21]  Jun-Ming Xu,et al.  Connectivity of lexicographic product and direct product of graphs , 2013, Ars Comb..

[22]  A. Schwenk COMPUTING THE CHARACTERISTIC POLYNOMIAL OF A GRAPH. , 1974 .

[23]  V. G. Vizing SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .

[24]  Sandi Klavzar,et al.  On the chromatic number of the lexicographic product and the Cartesian sum of graphs , 1994, Discret. Math..

[25]  Daniel Král,et al.  Hamilton cycles in strong products of graphs , 2005 .

[26]  Juan A. Rodríguez-Velázquez,et al.  On the metric dimension of corona product graphs , 2011, Comput. Math. Appl..

[27]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of product graphs , 2014, Electron. Notes Discret. Math..

[28]  Ping Zhang,et al.  Connected Resolvability of Graphs , 2003, Australas. J Comb..

[29]  On the Randić Index of Corona Product Graphs , 2011 .

[30]  S. A. Ghozati A finite automata approach to modeling the cross product of interconnection networks , 1999 .

[31]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[32]  Nenad Mladenović,et al.  STRONG METRIC DIMENSION: A SURVEY , 2014 .

[33]  Kaishun Wang,et al.  On the metric dimension and fractional metric dimension for hierarchical product of graphs , 2012, 1211.1432.

[34]  Ismael González Yero,et al.  On the Strong Partition Dimension of Graphs , 2013, Electron. J. Comb..

[35]  Glenn G. Chappell,et al.  Bounds on the metric and partition dimensions of a graph , 2008, Ars Comb..

[36]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of Cartesian and direct products of graphs , 2014, Discret. Math..

[37]  Gary Chartrand,et al.  Boundary vertices in graphs , 2003, Discret. Math..

[38]  R. S. Hales,et al.  Numerical invariants and the strong product of graphs , 1973 .

[39]  José Cáceres,et al.  On the metric dimension of some families of graphs , 2005, Electron. Notes Discret. Math..

[40]  Donald J. Miller The Categorical Product of Graphs , 1968, Canadian Journal of Mathematics.

[41]  Simon Spacapan The k-independence number of direct products of graphs and Hedetniemi's conjecture , 2011, Eur. J. Comb..

[42]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[43]  Ismael González Yero,et al.  The partition dimension of strong product graphs and Cartesian product graphs , 2014, Discret. Math..

[44]  Mark G. Karpovsky,et al.  On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.

[45]  V. Yegnanarayanan,et al.  On product graphs , 2012 .

[46]  Sandi Klavzar,et al.  Dominating direct products of graphs , 2007, Discret. Math..

[47]  Gary Chartrand,et al.  The partition dimension of a graph , 2000 .

[48]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[49]  Elkin Vumar,et al.  On edge connectivity of direct products of graphs , 2011, Inf. Process. Lett..

[50]  P. Hall On Representatives of Subsets , 1935 .

[51]  Gary Chartrand,et al.  The independent resolving number of a graph , 2003 .

[52]  Huajun Zhang,et al.  Independent sets in direct products of vertex-transitive graphs , 2010, J. Comb. Theory, Ser. B.

[53]  Xuding Zhu,et al.  Coloring the Cartesian Sum of Graphs , 2005, Electron. Notes Discret. Math..

[54]  Simon Spacapan Connectivity of Strong Products of Graphs , 2010, Graphs Comb..

[55]  Vassilios V. Dimakopoulos,et al.  On the hamiltonicity of the cartesian product , 2005, Inf. Process. Lett..

[56]  E. Scheinerman,et al.  Fractional Graph Theory: A Rational Approach to the Theory of Graphs , 1997 .

[57]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[58]  P. K. Jha,et al.  Independence numbers of product graphs , 1994 .

[59]  P. M. Weichsel THE KRONECKER PRODUCT OF GRAPHS , 1962 .

[60]  Marek Kubale,et al.  EQUITABLE COLORING OF CORONA PRODUCTS OF GRAPHS , 2013 .

[61]  Peter J. Slater Domination and location in acyclic graphs , 1987, Networks.

[62]  Mario Valencia-Pabon,et al.  Independence and coloring properties of direct products of some vertex-transitive graphs , 2006, Discret. Math..

[63]  Pranava K. Jha,et al.  Independence in Direct-Product Graphs , 1998, Ars Comb..

[64]  Alejandro Estrada-Moreno,et al.  K-metric Resolvability in Graphs , 2014, Electron. Notes Discret. Math..

[65]  P. Slater,et al.  A Boolean algebraic analysis of fire protection , 1984 .

[66]  Jun-Ming Xu,et al.  Connectivity of Cartesian product graphs , 2006, Discret. Math..

[67]  Gary Chartrand,et al.  Resolvability and the upper dimension of graphs , 2000 .

[68]  Simon Spacapan,et al.  Connectivity of Cartesian products of graphs , 2008, Appl. Math. Lett..

[69]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of the strong products of graphs , 2014 .

[70]  Douglas F. Rall,et al.  Associative graph products and their independence, domination and coloring numbers , 1996, Discuss. Math. Graph Theory.

[71]  José Cáceres,et al.  Searching for geodetic boundary vertex sets , 2005, Electron. Notes Discret. Math..

[72]  Sandi Klavzar,et al.  Coloring graph products - A survey , 1996, Discret. Math..

[73]  Juan A. Rodríguez-Velázquez,et al.  On the strong metric dimension of corona product graphs and join graphs , 2012, Discret. Appl. Math..

[74]  M. Johnson,et al.  Structure-activity maps for visualizing the graph variables arising in drug design. , 1993, Journal of biopharmaceutical statistics.

[75]  Wayne Goddard,et al.  Vizing's conjecture: a survey and recent results , 2012, J. Graph Theory.

[76]  N. Duncan Leaves on trees , 2014 .

[77]  Matthias Kriesell A Note on Hamiltonian Cycles in Lexicographical Products , 1997, J. Autom. Lang. Comb..

[78]  P. Paulraja,et al.  Hamilton cycles in tensor product of graphs , 1998, Discret. Math..

[79]  Katalin Vesztergombi Some remarks on the chromatic number of the strong product of graphs , 1979, Acta Cybern..

[80]  Nathan Linial,et al.  Graph products and chromatic numbers , 1989, 30th Annual Symposium on Foundations of Computer Science.

[81]  Ali Iranmanesh,et al.  Chemical Graphs Constructed from Rooted Product and Their Zagreb Indices , 2013 .

[82]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[83]  Milica Stojanovic,et al.  Minimal doubly resolving sets and the strong metric dimension of some convex polytopes , 2012, Appl. Math. Comput..

[84]  Z. Baranyai,et al.  Hamiltonian decomposition of lexicographic product , 1981, J. Comb. Theory, Ser. B.

[85]  Kung-wei Yang Chromatic number of Cartesian sum of two graphs , 1968 .

[86]  Kaishun Wang,et al.  On the metric dimension of bilinear forms graphs , 2011, Discret. Math..

[87]  Mark E. Johnson Browsable structure-activity datasets , 1999 .

[88]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[89]  Aleksandra Tepeh,et al.  On the geodetic number and related metric sets in Cartesian product graphs , 2008, Discret. Math..

[90]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[91]  Jozef Kratica,et al.  Minimal doubly resolving sets and the strong metric dimension of Hamming graphs , 2012 .

[92]  M. Cangalovic,et al.  COMPUTING STRONG METRIC DIMENSION OF SOME SPECIAL CLASSES OF GRAPHS BY GENETIC ALGORITHMS , 2008 .

[93]  Gert Sabidussi,et al.  Graphs with Given Group and Given Graph-Theoretical Properties , 1957, Canadian Journal of Mathematics.

[94]  F. Harary,et al.  On the corona of two graphs , 1970 .

[95]  Ping Zhang,et al.  Connected Resolving Sets in Graphs , 2003, Ars Comb..

[96]  Ronald D. Dutton,et al.  Resolving domination in graphs , 2003 .

[97]  José Cáceres,et al.  On the Metric Dimension of Infinite Graphs , 2009, Electron. Notes Discret. Math..

[98]  David R. Wood,et al.  Extremal Graph Theory for Metric Dimension and Diameter , 2007, Electron. J. Comb..

[99]  Ortrud R. Oellermann,et al.  The strong metric dimension of graphs and digraphs , 2007, Discret. Appl. Math..