Personnel tracking on construction sites using video cameras

This paper discusses the possibility of- and need for-tracking workforce on construction jobsites using video cameras. An evaluation of algorithms and their associated results is presented. The principal objective of this paper is to test and demonstrate the feasibility of tracking workers from statically placed and dynamically moving cameras. This paper also reviews existing techniques to monitor workforce and describes areas where this work might be useful in engineering applications. The main difficulties associated with tracking on a construction site is the significant amount of visual clutter, the changing photometric visual content throughout the course of a day, and the presence of occluding and moving obstacles. The tracking of workers within the field of view of the camera will involve four tracking techniques, density mean-shift, Bayesian segmentation, active contours, and graph-cuts. Typical construction site video will be processed using the proposed algorithms and analyzed to determine the most appropriate tracking method for the video presented.

[1]  R. Deriche,et al.  A variational framework for active and adaptative segmentation of vector valued images , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[2]  Larry S. Davis,et al.  Efficient mean-shift tracking via a new similarity measure , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Stefano Soatto,et al.  Relevant Feature Selection for Human Pose Estimation and Localization in Cluttered Images , 2008, ECCV.

[4]  Carlos H. Caldas,et al.  Tracking the Location of Materials on Construction Job Sites , 2006 .

[5]  Ioannis Brilakis,et al.  On-Site 3D Vision Tracking of Construction Personnel , 2008 .

[6]  Edward J. Jaselskis,et al.  Implementing Radio Frequency Identification in the Construction Process , 2003 .

[7]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  John Messner,et al.  An information model for project evaluation , 2001 .

[9]  Avinash C. Kak,et al.  A New Approach to the Use of Edge Extremities for Model-based Object Tracking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  O. Salem,et al.  Application of lean manufacturing principles to construction , 2005 .

[11]  Frédéric Bosché,et al.  Rapid human-assisted, obstacle avoidance system using sparse range point clouds , 2004 .

[12]  Min-Yuan Cheng,et al.  Integrating barcode and GIS for monitoring construction progress , 2002 .

[13]  Luc Van Gool,et al.  From images to 3D models , 2002, CACM.

[14]  Stefano Soatto,et al.  Estimation of 3D Surface Shape and Smooth Radiance from 2D Images: A Level Set Approach , 2003, J. Sci. Comput..

[15]  Jochen Teizer,et al.  Human Factors Analysis Classification System Relating to Human Error Awareness Taxonomy in Construction Safety , 2009 .

[16]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Ronie Navon,et al.  Monitoring labor inputs: automated-data-collection model and enabling technologies , 2003 .

[18]  Yogesh Rathi,et al.  Multi-Object Tracking Through Clutter Using Graph Cuts , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[19]  Jochen Teizer,et al.  Rapid Automated Monitoring of Construction Site Activities Using Ultra-Wide Band , 2007 .

[20]  H. Howe,et al.  Census of Fatal Occupational Injuries , 1996 .

[21]  Larry S. Davis,et al.  Probabilistic tracking in joint feature-spatial spaces , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[22]  Jeffrey S. Bohn,et al.  Construction Project Monitoring Using High-Resolution Automated Cameras , 2010 .

[23]  Burcu Akinci,et al.  Combining Reality Capture Technologies for Construction Defect Detection: A Case Study , 2003 .

[24]  Daniel Cremers,et al.  Nonlinear Dynamical Shape Priors for Level Set Segmentation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[26]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Hans-Hellmut Nagel,et al.  3D Pose Estimation by Directly Matching Polyhedral Models to Gray Value Gradients , 1997, International Journal of Computer Vision.

[28]  Amir Averbuch,et al.  Fast gradient methods based on global motion estimation for video compression , 2003, IEEE Trans. Circuits Syst. Video Technol..

[29]  Tobias Bjerregaard,et al.  A survey of research and practices of Network-on-chip , 2006, CSUR.

[30]  Charles M. Eastman,et al.  BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors , 2008 .

[31]  Frédéric Bosché,et al.  Automated retrieval of 3D CAD model objects in construction range images , 2008 .

[32]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[33]  Alper Yilmaz,et al.  Object Tracking by Asymmetric Kernel Mean Shift with Automatic Scale and Orientation Selection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Angela Lee,et al.  IFC model viewer to support nD model application , 2006 .

[35]  Patricio A. Vela,et al.  Geometric Observers for Dynamically Evolving Curves , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Sergio A. Velastin,et al.  Crowd analysis: a survey , 2008, Machine Vision and Applications.

[37]  Mani Golparvar-Fard,et al.  Interactive Visual Construction Progress Monitoring with D 4 AR — 4D Augmented Reality — Models , 2009 .

[38]  Geraldine S. Cheok,et al.  Field Demonstration of Laser Scanning for Excavation Measurement , 2000 .

[39]  Ronie Navon,et al.  Automated project performance control of construction projects , 2005 .

[40]  Mubarak Shah,et al.  A Lagrangian Particle Dynamics Approach for Crowd Flow Segmentation and Stability Analysis , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[42]  David A. Forsyth,et al.  Shape, Contour and Grouping in Computer Vision , 1999, Lecture Notes in Computer Science.

[43]  Philip H. S. Torr,et al.  Hierarchical Model Fitting to 2D and 3D Data , 2006, International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06).

[44]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[45]  Burcu Akinci,et al.  Tracking and locating components in a precast storage yard utilizing radio frequency identification technology and GPS , 2007 .

[46]  Hai Tao,et al.  Object Tracking with Bayesian Estimation of Dynamic Layer Representations , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Daniel T. Jones,et al.  The machine that changed the world : based on the Massachusetts Institute of Technology 5-million dollar 5-year study on the future of the automobile , 1990 .

[48]  Min-Yuan Cheng,et al.  Computer-aided DSS for safety monitoring of geotechnical construction , 2002 .

[49]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[50]  Carlos H. Caldas,et al.  Using Global Positioning System to Improve Materials-Locating Processes on Industrial Projects , 2006 .

[51]  Sridha Sridharan,et al.  An adaptive optical flow technique for person tracking systems , 2007, Pattern Recognit. Lett..

[52]  David Gerónimo Gómez,et al.  Computer Vision Approaches to Pedestrian Detection: Visible Spectrum Survey , 2007, IbPRIA.

[53]  Tao Zhang,et al.  Active contours for tracking distributions , 2004, IEEE Transactions on Image Processing.

[54]  Donald Washburn,et al.  Knowledge-Based Segmentation for Tracking Through Deep Turbulence , 2008, IEEE Transactions on Control Systems Technology.

[55]  Rafael Sacks,et al.  Building Project Model Support for Automated Labor Monitoring , 2003 .

[56]  Paul M. Goodrum,et al.  The divergence in aggregate and activity estimates of US construction productivity , 2002 .

[57]  David Demirdjian Combining Geometric- and View-Based Approaches for Articulated Pose Estimation , 2004, ECCV.

[58]  George Vosselman,et al.  Reconstruction of 3D building models from aerial images and maps , 2003 .

[59]  Hans-Hellmut Nagel,et al.  Model-based object tracking in monocular image sequences of road traffic scenes , 1993, International Journal of Computer 11263on.

[60]  Stan Birchfield,et al.  Spatial Histograms for Region‐Based Tracking , 2007 .

[61]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[62]  R. Navon,et al.  Research in automated measurement of project performance indicators , 2007 .

[63]  Richard Szeliski,et al.  An Integrated Bayesian Approach to Layer Extraction from Image Sequences , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[65]  Stefano Soatto,et al.  Detecting Humans via Their Pose , 2006, NIPS.

[66]  Burcu Akinci,et al.  Formalization and Automation of Time-Space Conflict Analysis , 2002 .

[67]  Carlos H. Caldas,et al.  Real-Time Three-Dimensional Occupancy Grid Modeling for the Detection and Tracking of Construction Resources , 2007 .

[68]  Vineet R. Kamat,et al.  Large-Scale Dynamic Terrain in Three-Dimensional Construction Process Visualizations , 2005 .

[69]  Rafael Sacks,et al.  Assessing research issues in Automated Project Performance Control (APPC) , 2007 .

[70]  George Wolberg,et al.  Multiview Geometry for Texture Mapping 2D Images Onto 3D Range Data , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[71]  Lucio Soibelman,et al.  Construction site image retrieval based on material cluster recognition , 2006, Adv. Eng. Informatics.

[72]  Richard I. Hartley,et al.  Optimal Algorithms in Multiview Geometry , 2007, ACCV.