Stabilized gold clusters: from isolation toward controlled synthesis.

Bare metal clusters with fewer than ∼100 atoms exhibit intrinsically unique and size-specific properties, making them promising functional units or building blocks for novel materials. To utilize such clusters in functional materials, they need to be stabilized against coalescence by employing organic ligands, polymers, and solid materials. To realize rational development of cluster-based materials, it is essential to clarify how the stability and nature of clusters are modified by interactions with stabilizers by characterizing isolated clusters. The next stage is to design on-demand function by intentionally controlling the structural parameters of cluster-based materials; such parameters include the size, composition, and atomic arrangement of clusters and the interfacial structure between clusters and stabilizers. This review summarizes the current state of the art of isolation of gold clusters stabilized in various environments and surveys ongoing efforts to precisely control the structural parameters with atomic level accuracy.

[1]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[2]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[3]  H. Sakurai,et al.  Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. , 2009, Journal of the American Chemical Society.

[4]  Barry Ellen,et al.  Doping 25-Atom and 38-Atom Gold Nanoclusters with Palladium , 2011 .

[5]  T. Fujitani,et al.  Mechanism and active sites of the oxidation of CO over Au/TiO2. , 2011, Angewandte Chemie.

[6]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[7]  J. Grunwaldt,et al.  Preparation of Supported Gold Catalysts for Low-Temperature CO Oxidation via “Size-Controlled” Gold Colloids , 1999 .

[8]  A. Dass Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. , 2009, Journal of the American Chemical Society.

[9]  R. Jin,et al.  Isolation of ubiquitous Au(40)(SR)(24) clusters from the 8 kDa gold clusters. , 2010, Journal of the American Chemical Society.

[10]  R. Jin,et al.  Atomically precise gold nanocrystal molecules with surface plasmon resonance , 2012, Proceedings of the National Academy of Sciences.

[11]  M. Kappes,et al.  Electronic photodissociation spectroscopy of Aun- x Xe (n = 7-11) versus time-dependent density functional theory prediction. , 2004, The Journal of chemical physics.

[12]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[13]  R. Jin,et al.  Synthesis and electrospray mass spectrometry determination of thiolate-protected Au55(SR)31 nanoclusters. , 2011, Chemical communications.

[14]  Wei Huang,et al.  Relativistic effects and the unique low-symmetry structures of gold nanoclusters. , 2008, ACS nano.

[15]  R. Jin,et al.  The Structure and Bonding of Au25(SR)18 Nanoclusters from EXAFS: The Interplay of Metallic and Molecular Behavior , 2011 .

[16]  Patrick Weis,et al.  Structures of small gold cluster cations (Aun+, n<14): Ion mobility measurements versus density functional calculations , 2002 .

[17]  Zhuhua Zhang,et al.  Interlocked catenane-like structure predicted in Au24(SR)20: implication to structural evolution of thiolated gold clusters from homoleptic gold(I) thiolates to core-stacked nanoparticles. , 2012, Journal of the American Chemical Society.

[18]  M. Moseler,et al.  Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. , 2004, Physical review letters.

[19]  T. Akita,et al.  Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime , 2011 .

[20]  K. Al‐Shamery,et al.  Formation of alkanethiolate-protected gold clusters with unprecedented core sizes in the thiolation of polymer-stabilized gold clusters , 2007 .

[21]  Xiaobo Shi,et al.  Site Preference in Vertex-Sharing Polyicosahedral Supraclusters Containing Groups 10 and 11 Metals and Their Bonding Implications: Syntheses and Structures of the First Au-Ag-M (M = Pt, Ni) Biicosahedral Clusters [(Ph3P)10Au12Ag12PtCl7]Cl and [(Ph3P)10Au12Ag12NiCl7](SbF6) , 1994 .

[22]  R. Jin,et al.  Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. , 2009, The journal of physical chemistry. A.

[23]  R. Whetten,et al.  Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. , 2007, Journal of the American Chemical Society.

[24]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[25]  G. Somorjai,et al.  Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. , 2008, Journal of the American Chemical Society.

[26]  R. Jin,et al.  One‐Pot Synthesis of Au25(SG)18 2‐ and 4‐nm Gold Nanoparticles and Comparison of Their Size‐Dependent Properties , 2011 .

[27]  Y. Majima,et al.  Platonic hexahedron composed of six organic faces with an inscribed Au cluster. , 2012, Journal of the American Chemical Society.

[28]  R. Jin,et al.  Conversion of Polydisperse Au Nanoparticles into Monodisperse Au25 Nanorods and Nanospheres , 2009 .

[29]  Wei Huang,et al.  Probing the interactions of O(2) with small gold cluster anions (Au(n)(-), n = 1-7): chemisorption vs physisorption. , 2010, Journal of the American Chemical Society.

[30]  Y. Tai,et al.  Oxidation of carbon monoxide on Au nanoparticles in titania and titania-coated silica aerogels , 2004 .

[31]  R. Palmer,et al.  Counting the atoms in supported, monolayer-protected gold clusters. , 2010, Journal of the American Chemical Society.

[32]  R. Jin,et al.  Ambient Synthesis of Au144(SR)60 Nanoclusters in Methanol , 2011 .

[33]  U. Landman,et al.  Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies , 1996 .

[34]  H. Kitagawa,et al.  Hydrogen-induced crystal structural transformation of FePt nanoparticles at low temperature , 2007 .

[35]  A. Bleloch,et al.  Three-dimensional atomic-scale structure of size-selected gold nanoclusters , 2008, Nature.

[36]  M. L. Tiago,et al.  The "staple" motif: a key to stability of thiolate-protected gold nanoclusters. , 2008, Journal of the American Chemical Society.

[37]  Joseph F. Parker,et al.  The story of a monodisperse gold nanoparticle: Au25L18. , 2010, Accounts of chemical research.

[38]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[39]  M. Walter,et al.  On the Structure of a Thiolated Gold Cluster: Au44(SR)282−† , 2010 .

[40]  Y. Negishi,et al.  Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2−18): A Stepping Stone to Cluster-Assembled Materials , 2007 .

[41]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[42]  Emily V. Carino,et al.  Site-selective Cu deposition on Pt dendrimer-encapsulated nanoparticles: correlation of theory and experiment. , 2012, Journal of the American Chemical Society.

[43]  Y. Negishi,et al.  Isolation, structure, and stability of a dodecanethiolate-protected Pd(1)Au(24) cluster. , 2010, Physical chemistry chemical physics : PCCP.

[44]  A. Dass,et al.  Au36(SPh)23 nanomolecules. , 2011, Journal of the American Chemical Society.

[45]  Soler,et al.  Do thiols merely passivate gold nanoclusters? , 2000, Physical review letters.

[46]  Tatsuya Tsukuda,et al.  Chiroptical activity of BINAP-stabilized undecagold clusters. , 2006, The journal of physical chemistry. B.

[47]  T. Teranishi,et al.  Size Control of Palladium Nanoparticles and Their Crystal Structures , 1998 .

[48]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[49]  Y. Negishi,et al.  Extremely high stability of glutathionate-protected Au25 clusters against core etching. , 2007, Small.

[50]  Y. Negishi,et al.  Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. , 2010, Chemical communications.

[51]  Y. Negishi,et al.  Isolation and structural characterization of an octaneselenolate-protected Au25 cluster. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[52]  S. Xie,et al.  Organogold clusters protected by phenylacetylene. , 2011, Journal of the American Chemical Society.

[53]  Thomas Bürgi,et al.  Ligand exchange reactions on Au(38) and Au(40) clusters: a combined circular dichroism and mass spectrometry study. , 2010, Journal of the American Chemical Society.

[54]  R. Whetten,et al.  Thiolated gold nanowires: metallic versus semiconducting. , 2009, ACS nano.

[55]  H. Tsunoyama,et al.  Magic numbers of gold clusters stabilized by PVP. , 2009, Journal of the American Chemical Society.

[56]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[57]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[58]  Nanfeng Zheng,et al.  A general synthetic strategy for oxide-supported metal nanoparticle catalysts. , 2006, Journal of the American Chemical Society.

[59]  S. Xie,et al.  Selective synthesis of organogold magic clusters Au54(C≡CPh)26. , 2012, Chemical communications.

[60]  M. Moseler,et al.  A 58-electron superatom-complex model for the magic phosphine-protected gold clusters (Schmid-gold, Nanogold®) of 1.4-nm dimension , 2011 .

[61]  R. Whetten,et al.  All-aromatic, nanometer-scale, gold-cluster thiolate complexes. , 2005, Journal of the American Chemical Society.

[62]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[63]  K. Nobusada,et al.  Theoretical Investigation of Optimized Structures of Thiolated Gold Cluster [Au25(SCH3)18]+ , 2007 .

[64]  Asantha C. Dharmaratne,et al.  Nanocluster size evolution studied by mass spectrometry in room temperature Au25(SR)18 synthesis. , 2009, Journal of the American Chemical Society.

[65]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[66]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[67]  R. Palmer,et al.  Size-Selected Metal Clusters: New Models for Catalysis with Atomic Precision , 2011 .

[68]  D. Mingos,et al.  Closed-shell electronic requirements for condensed clusters of the group 11 elements , 1991 .

[69]  Yukatsu Shichibu,et al.  HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to "magic-number" Au13 clusters. , 2010, Small.

[70]  O. Lopez-Acevedo,et al.  Chirality and electronic structure of the thiolate-protected Au38 nanocluster. , 2010, Journal of the American Chemical Society.

[71]  M. Haruta,et al.  Catalytically highly active top gold atom on palladium nanocluster. , 2011, Nature materials.

[72]  A. M. Alvarez,et al.  Crystal Structures of Molecular Gold Nanocrystal Arrays , 1999 .

[73]  N. Kojima,et al.  197Au Mössbauer Spectroscopy of Au25(SG)18− Revisited , 2011 .

[74]  A. Datye,et al.  CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex , 2002 .

[75]  Joseph F. Parker,et al.  Synthesis of monodisperse [Oct4N(+)][Au25(SR)18(-)] nanoparticles, with some mechanistic observations. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[76]  R. Murray,et al.  Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au(144/146)(SC(11)H(22)N(CH(2)CH(3))(3)(+))(x)(S(CH(2))(5)CH(3))(y)](x+). , 2009, Journal of the American Chemical Society.

[77]  Zhenghua Tang,et al.  Synthesis and structural determination of multidentate 2,3-dithiol-stabilized Au clusters. , 2010, Journal of the American Chemical Society.

[78]  D. Mingos Bonding in molecular clusters and their relationship to bulk metals , 1986 .

[79]  R. Jin,et al.  Thiolate-Protected Au24(SC2H4Ph)20 Nanoclusters: Superatoms or Not? , 2010 .

[80]  Y. Negishi,et al.  Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. , 2005, Journal of the American Chemical Society.

[81]  Brian F. G. Johnson,et al.  Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters , 2008, Nature.

[82]  Nan Shao,et al.  Probing the structural evolution of medium-sized gold clusters: Au(n)(-) (n = 27-35). , 2010, Journal of the American Chemical Society.

[83]  Hannu Häkkinen,et al.  Catalytic CO oxidation by free Au2-: experiment and theory. , 2003, Journal of the American Chemical Society.

[84]  R. Murray,et al.  Mass spectrometry of small bimetal monolayer-protected clusters. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[85]  In search of a structural model for a thiolate-protected Au38 cluster , 2008, 0804.0018.

[86]  K. Nobusada,et al.  Oligomeric Gold Clusters with Vertex-Sharing Bi- and Triicosahedral Structures , 2007 .

[87]  W. P. Bosman,et al.  Gold clusters: synthesis and characterization of [Au8(PPh3)7(CNR)]2+, [Au9(PPh36(CNR2]3+ and [Au11(PPH37(CNR)2O]2+ and their reactivity towards amines. The crystal structure of [Au11(PPh3)7(CN-i-Pr)2I](PF6)2 , 1986 .

[88]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[89]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[90]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[91]  A. Sra,et al.  Synthesis of atomically ordered AuCu and AuCu(3) nanocrystals from bimetallic nanoparticle precursors. , 2004, Journal of the American Chemical Society.

[92]  Zhi Wang,et al.  Real-space observation of prolate monolayer-protected Au(38) clusters using aberration-corrected scanning transmission electron microscopy. , 2011, Small.

[93]  A. Castleman,et al.  Impact of Swapping Ethyl for Phenyl Groups on Diphosphine-Protected Undecagold , 2007 .

[94]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[95]  S. Bulusu,et al.  Structural transition of gold nanoclusters: from the golden cage to the golden pyramid. , 2009, ACS nano.

[96]  J. Limtrakul,et al.  MALDI Mass Analysis of 11 kDa Gold Clusters Protected by Octadecanethiolate Ligands , 2010 .

[97]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[98]  R. Murray,et al.  Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. , 2007, Journal of the American Chemical Society.

[99]  R. Jin,et al.  Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. , 2011, Journal of the American Chemical Society.

[100]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[101]  R. Jin,et al.  Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. , 2009, ACS nano.

[102]  Hannu Häkkinen,et al.  On the Electronic and Atomic Structures of Small AuN- (N = 4−14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study , 2003 .

[103]  M. El-Sayed,et al.  Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. , 2005, The journal of physical chemistry. B.

[104]  H. Sakurai,et al.  Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. , 2005, Journal of the American Chemical Society.

[105]  Xiaobo Shi,et al.  Molecular architecture of a novel vertex-sharing biicosahedral cluster [(p-Tol3P)10Au13Ag12Br8](PF6) containing a staggered-staggered-staggered configuration for the 25-atom metal framework , 1990 .

[106]  H. Sakurai,et al.  Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: application to aerobic homocoupling of phenylboronic acid in water. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[107]  A. Dass Faradaurate nanomolecules: a superstable plasmonic 76.3 kDa cluster. , 2011, Journal of the American Chemical Society.

[108]  Thomas Bürgi,et al.  Vibrational Circular Dichroism of Adsorbed Molecules: BINAS on Gold Nanoparticles† , 2010 .

[109]  R. Whetten,et al.  Coadsorption of CO and O(2) on selected gold clusters: evidence for efficient room-temperature CO(2) generation. , 2002, Journal of the American Chemical Society.

[110]  Matthias Fischer,et al.  Direct observation of key reaction intermediates on gold clusters. , 2003, Journal of the American Chemical Society.

[111]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[112]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[113]  Xiaobo Shi,et al.  Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage , 1992 .

[114]  X. Zeng,et al.  Thiolate-protected Au20(SR)16 cluster: prolate Au8 core with new [Au3(SR)4] staple motif. , 2009, Journal of the American Chemical Society.

[115]  T. Akita,et al.  Preparation of ∼1 nm Gold Clusters Confined within Mesoporous Silica and Microwave-Assisted Catalytic Application for Alcohol Oxidation , 2009 .

[116]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[117]  T. Tsukuda Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters , 2012 .

[118]  U. Landman,et al.  Electronic Structure of PassivatedAu38(SCH3)24Nanocrystal , 1999 .

[119]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[120]  X. Zeng,et al.  Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. , 2008, Journal of the American Chemical Society.

[121]  Kimihisa Yamamoto,et al.  Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. , 2009, Nature chemistry.

[122]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[123]  James W. White,et al.  Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction , 1981 .

[124]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[125]  A. Dass,et al.  (AuAg)144(SR)60 alloy nanomolecules. , 2011, Nanoscale.

[126]  Xiaobo Shi,et al.  Cluster of clusters: a modular approach to large metal clusters. Structural characterization of a 38-atom cluster [(p-Tol3P)12Au18Ag20Cl14] based on vertex-sharing triicosahedra , 1990 .

[127]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[128]  Electronic Structure and Bonding of Icosahedral Core–Shell Gold–Silver Nanoalloy Clusters Au144–xAgx(SR)60 , 2011, 1108.5247.

[129]  U. Landman,et al.  Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites , 1998 .

[130]  R. Jin,et al.  Thiolate-protected Au(20) clusters with a large energy gap of 2.1 eV. , 2009, Journal of the American Chemical Society.

[131]  Lai‐Sheng Wang,et al.  Facile syntheses of monodisperse ultrasmall Au clusters. , 2006, The journal of physical chemistry. B.

[132]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[133]  T. Akita,et al.  Size Effect of Silica-supported Gold Clusters in the Microwave-assisted Oxidation of Benzyl Alcohol with H2O2 , 2010 .

[134]  A. I. Kozlov,et al.  A new approach to active supported Au catalysts , 1999 .

[135]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[136]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[137]  M. Kappes,et al.  Au34-: a chiral gold cluster? , 2007, Angewandte Chemie.

[138]  T. Akita,et al.  Efficient and selective epoxidation of styrene with TBHP catalyzed by Au(25) clusters on hydroxyapatite. , 2010, Chemical communications.

[139]  Uzi Landman,et al.  Structural evolution of Au nanoclusters: From planar to cage to tubular motifs , 2006 .

[140]  R. Jin,et al.  Site-Specific and Size-Dependent Bonding of Compositionally Precise Gold−Thiolate Nanoparticles from X-ray Spectroscopy , 2010 .

[141]  Y. Negishi,et al.  Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. , 2012, Chemical communications.

[142]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[143]  D. Bushnell,et al.  Synthesis and characterization of Au102(p-MBA)44 nanoparticles. , 2011, Journal of the American Chemical Society.

[144]  D. Fiorani,et al.  General Strategy for Direct Synthesis of L10 Nanoparticle Alloys from Layered Precursor: The Case of FePt , 2009 .

[145]  R. Whetten,et al.  What protects the core when the thiolated Au cluster is extremely small , 2009 .

[146]  T. Tsukuda,et al.  Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere. , 2011, Dalton transactions.

[147]  H. Tsunoyama,et al.  Microfluidic synthesis and catalytic application of PVP-stabilized, approximately 1 nm gold clusters. , 2008, Langmuir : the ACS journal of surfaces and colloids.