Forbidden patterns, permutation entropy and stock market inefficiency

In this paper we introduce two new quantifiers for the stock market inefficiency: the number of forbidden patterns and the normalized permutation entropy. They are model-independent measures, thus they have more general applicability. We find robust evidence that degree of market inefficiency is positively correlated with the number of forbidden patterns and negatively correlated with the permutation entropy. Our empirical results suggest that these two physical tools are useful to discriminate the stage of stock market development and can be easily implemented.

[1]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[2]  Osvaldo A. Rosso,et al.  Randomizing nonlinear maps via symbolic dynamics , 2008 .

[3]  I. Percival,et al.  A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems , 1979 .

[4]  F. Bazso,et al.  Accuracy of joint entropy and mutual information estimates , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[5]  G. Oh,et al.  Relationship between efficiency and predictability in stock price change , 2007, 0708.4178.

[6]  S. Bentes,et al.  Long Memory and Volatility Clustering: is the empirical evidence consistent across stock markets? , 2007, 0709.2178.

[7]  Wiston Adrián Risso,et al.  The informational efficiency and the financial crashes , 2008 .

[8]  S. Shepherd Irregularity , 1859, The American journal of dental science.

[9]  A. M. Kowalski,et al.  Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy , 2008 .

[10]  A. Plastino,et al.  Permutation entropy of fractional Brownian motion and fractional Gaussian noise , 2008 .

[11]  J. McCauley,et al.  Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance , 2006, cond-mat/0602316.

[12]  Profit profiles in correlated markets , 2001, cond-mat/0104305.

[13]  Claudio R. Mirasso,et al.  Encryption test of pseudo-aleatory messages embedded on chaotic laser signals: An information theory approach , 2008 .

[14]  Miguel A. F. Sanjuán,et al.  True and false forbidden patterns in deterministic and random dynamics , 2007 .

[15]  Benjamin Miranda Tabak,et al.  Ranking efficiency for emerging equity markets II , 2005 .

[16]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[17]  O. Rosso,et al.  Inefficiency in Latin-American market indices , 2007 .

[18]  T. D. Matteo,et al.  Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development , 2004, cond-mat/0403681.

[19]  Karsten Keller,et al.  Symbolic Analysis of High-Dimensional Time Series , 2003, Int. J. Bifurc. Chaos.

[20]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[21]  D. Grech,et al.  The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market , 2008 .

[22]  V. Plerou,et al.  Econophysics: financial time series from a statistical physics point of view , 2000 .

[23]  Massimiliano Zanin,et al.  Forbidden patterns in financial time series. , 2007, Chaos.

[24]  M Garavaglia,et al.  Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Gabjin Oh,et al.  Market efficiency in foreign exchange markets , 2007 .

[26]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  C. Finney,et al.  A review of symbolic analysis of experimental data , 2003 .

[28]  Mariano Matilla-García,et al.  A non-parametric test for independence based on symbolic dynamics , 2007 .

[29]  Wlodzimierz Klonowski,et al.  ‘Epileptic seizures’ in economic organism , 2004 .

[30]  Evidence of increment of efficiency of the Mexican Stock Market through the analysis of its variations , 2007 .

[31]  Harry Eugene Stanley,et al.  Econophysics: can physicists contribute to the science of economics? , 1999, Comput. Sci. Eng..

[32]  G. Darbellay,et al.  The entropy as a tool for analysing statistical dependences in financial time series , 2000 .

[33]  C. Anteneodo,et al.  Stock index dynamics worldwide: a comparative analysis , 2008 .

[34]  N. Groenewold,et al.  The efficiency of the Chinese stock market and the role of the banks , 2003 .

[35]  Yi-Cheng Zhang,et al.  Toward a theory of marginally efficient markets , 1999 .

[36]  D. Grech,et al.  Can one make any crash prediction in finance using the local Hurst exponent idea , 2003, cond-mat/0311627.

[37]  R. Kálmán,et al.  Irregularity, volatility, risk, and financial market time series. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Nikiforos T. Laopodis,et al.  Fiscal policy and stock market efficiency: Evidence for the United States , 2009 .

[39]  Osvaldo A. Rosso,et al.  Random number generators and causality , 2006 .

[40]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[41]  Mathieu Sinn,et al.  Ordinal analysis of time series , 2005 .

[42]  Osvaldo A. Rosso,et al.  Intensive statistical complexity measure of pseudorandom number generators , 2005 .

[43]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[44]  Osvaldo A. Rosso,et al.  Characterization of time dynamical evolution of electroencephalographic epileptic records , 2002 .

[45]  Boon Leong Lan,et al.  Statistical properties of stock market indices of different economies , 2007 .

[46]  D. Grech,et al.  Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market , 2008 .

[47]  Osvaldo A. Rosso,et al.  Bandt–Pompe approach to the classical-quantum transition , 2007 .

[48]  B. M. Tabak,et al.  Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions , 2004 .

[49]  José M. Amigó,et al.  Topological permutation entropy , 2007 .

[50]  B. M. Tabak,et al.  The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient , 2004 .

[51]  G. Oh,et al.  Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets , 2007, 0712.1624.

[52]  Alejandra Figliola,et al.  A multifractal approach for stock market inefficiency , 2008 .

[53]  G. Ouyang,et al.  Predictability analysis of absence seizures with permutation entropy , 2007, Epilepsy Research.

[54]  B. M. Tabak,et al.  Ranking efficiency for emerging markets , 2004 .

[55]  Ljupco Kocarev,et al.  Order patterns and chaos , 2006 .