Low‐Temperature Absorption, Photoluminescence, and Lifetime of CsPbX3 (X = Cl, Br, I) Nanocrystals

The absorption and photoluminescence, both steady‐state and time‐resolved, of CsPbX3 (X = Cl, Br, I) nanocrystals are reported at temperatures ranging from 3 to 300 K. These measurements offer a unique window into the fundamental properties of this class of materials which is considered promising for light‐emitting and detection devices. The bandgaps are shown to increase from low to high temperature, and none of the examined cesium‐based perovskite nanocrystals exhibit a bandgap discontinuity in this temperature range suggesting constant crystal phase. Time‐resolved measurements show that the radiative lifetime of the band‐edge emission depends strongly on the halide ion and increases with heating. The increasing lifetime at higher temperatures is attributed primarily to free carriers produced from exciton fission, corroborated by the prevalence of excitonic character in absorption. The results particularly highlight many of the similarities in physical properties, such as low exciton binding energy and long lifetime, between CsPbI3 and hybrid organic–inorganic plumbotrihalide perovskites.

[1]  R. Schaller,et al.  Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition. , 2018, Nano letters.

[2]  Jiwon Bang,et al.  Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr3 and CsPb(Br/I)3 Quantum Dots at Low Temperature , 2017 .

[3]  D. Vanmaekelbergh,et al.  Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals , 2017, ACS nano.

[4]  J. B. Baxter,et al.  Slow Electron–Hole Recombination in Lead Iodide Perovskites Does Not Require a Molecular Dipole , 2017 .

[5]  Maria Antonietta Loi,et al.  Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films. , 2017, Small.

[6]  M. Kovalenko,et al.  High‐Temperature Photoluminescence of CsPbX3 (X = Cl, Br, I) Nanocrystals , 2017 .

[7]  J. Even,et al.  Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. , 2017, Nano letters.

[8]  Antonietta Guagliardi,et al.  Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals , 2017, ACS nano.

[9]  L. Kronik,et al.  Local Polar Fluctuations in Lead Halide Perovskite Crystals. , 2016, Physical review letters.

[10]  A. Zunger,et al.  Functionality-Directed Screening of Pb-Free Hybrid Organic–Inorganic Perovskites with Desired Intrinsic Photovoltaic Functionalities , 2016, 1611.08032.

[11]  A. Alivisatos,et al.  Atomic Resolution Imaging of Halide Perovskites. , 2016, Nano letters.

[12]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[13]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[14]  Aron Walsh,et al.  Indirect to direct bandgap transition in methylammonium lead halide perovskite , 2016, 1609.07036.

[15]  Angshuman Nag,et al.  Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals , 2016 .

[16]  Xi Yuan,et al.  Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films , 2016 .

[17]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[18]  Tian Jiang,et al.  Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. , 2016, Optics letters.

[19]  G. Prando,et al.  Graphene spintronics: Rashba or not Rashba? , 2016 .

[20]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[21]  Thibaud Etienne,et al.  Dynamical Origin of the Rashba Effect in Organohalide Lead Perovskites: A Key to Suppressed Carrier Recombination in Perovskite Solar Cells? , 2016, The journal of physical chemistry letters.

[22]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[23]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[24]  Oleksandr Isaienko,et al.  Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots. , 2016, Nano letters.

[25]  J. Even,et al.  Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications , 2015, Light: Science & Applications.

[26]  David Cahen,et al.  Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. , 2015, The journal of physical chemistry letters.

[27]  L. Tan,et al.  Strain-Induced Ferroelectric Topological Insulator. , 2015, Nano letters.

[28]  M. Kanatzidis,et al.  Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbB r 3 and CsPbC l 3 , 2015 .

[29]  L. Tan,et al.  Rashba Spin-Orbit Coupling Enhanced Carrier Lifetime in CH₃NH₃PbI₃. , 2015, Nano letters.

[30]  H. Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) , 2015, Advanced materials.

[31]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[32]  O. Eriksson,et al.  Correction: Corrigendum: Topological excitations in a kagome magnet , 2015, Nature Communications.

[33]  C. Brabec,et al.  Detection of X-ray photons by solution-processed lead halide perovskites , 2015, Nature Photonics.

[34]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[35]  Sabre Kais,et al.  Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 , 2014, Nature Communications.

[36]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[37]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[38]  M. Johnston,et al.  Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films , 2014 .

[39]  Claudine Katan,et al.  Analysis of Multivalley and Multibandgap Absorption and Enhancement of Free Carriers Related to Exciton Screening in Hybrid Perovskites , 2014 .

[40]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[41]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[42]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[43]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[44]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[45]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[46]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[47]  Zhifu Liu,et al.  Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High-Energy Radiation Detection , 2013 .

[48]  R Cowan Sarah,et al.  ポリマ バルクヘテロ接合太陽電池の過渡的光伝導:sweep-outと再結合間の競合 , 2011 .

[49]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[50]  G. Conte,et al.  An impedance spectroscopy investigation of nanocrystalline CsPbBr3 films , 2005 .

[51]  A. Masaki,et al.  Strongly Enhanced Free-Exciton Luminescence in Microcrystalline CsPbBr3 Films , 2003 .

[52]  S. Lefrant,et al.  Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering , 1997 .

[53]  Norris,et al.  Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. , 1996, Physical review. B, Condensed matter.

[54]  E. Peterman,et al.  Temperature-dependent triplet and fluorescence quantum yields of the photosystem II reaction center described in a thermodynamic model. , 1994, Biophysical journal.

[55]  J. Treusch,et al.  Cesium-trihalogen-plumbates a new class of ionic semiconductors , 1979 .

[56]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[57]  C. K. Møller Crystal Structure and Photoconductivity of Cæsium Plumbohalides , 1958 .