Chirality arising from small defects in gold nanoparticle arrays.

The symmetry of metal nanostructures may be broken by their overall features or small-scale defects. To separate the roles of these two mechanisms in chiral symmetry breaking, we prepare gold nanostructures with chirality occurring on different levels. Linear optical measurements reveal small chiral signatures, whereas the chiral responses from second-harmonic generation are enormous. The responses of all structures are remarkably similar, suggesting that uncontrollable defects play an important role in symmetry breaking.

[1]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[2]  Harry A. Atwater,et al.  Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles , 2005 .

[3]  Bernhard Lamprecht,et al.  SHG studies of plasmon dephasing in nanoparticles , 1999 .

[4]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[5]  N. Zheludev,et al.  Optical manifestations of planar chirality. , 2003, Physical review letters.

[6]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .

[7]  J. Zyss,et al.  Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy. , 2003, Optics letters.

[8]  J. Zyss,et al.  Nonlinear optical properties , 2006 .

[9]  H. Craighead,et al.  CHARACTERIZATION AND OPTICAL PROPERTIES OF ARRAYS OF SMALL GOLD PARTICLES. , 1984 .

[10]  Konstantins Jefimovs,et al.  Linear and Second-Order Nonlinear Optical Properties of Arrays of Noncentrosymmetric Gold Nanoparticles , 2002 .

[11]  Konstantins Jefimovs,et al.  Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles. , 2004, Optics express.

[12]  K. Jefimovs,et al.  Remarkable polarization sensitivity of gold nanoparticle arrays , 2005 .

[13]  Konstantins Jefimovs,et al.  Optical activity in subwavelength-period arrays of chiral metallic particles , 2003 .

[14]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[15]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[16]  H. Ditlbacher,et al.  Spectrally coded optical data storage by metal nanoparticles. , 2000, Optics letters.

[17]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[18]  Martti Kauranen,et al.  Chirality in surface nonlinear optics , 1998 .

[19]  F. Aussenegg,et al.  Optical dichroism of lithographically designed silver nanoparticle films. , 1996, Optics letters.

[20]  D. Bergman,et al.  Coherent control of femtosecond energy localization in nanosystems. , 2002, Physical review letters.

[21]  Maki,et al.  Surface second-harmonic generation from chiral materials. , 1995, Physical review. B, Condensed matter.

[22]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[23]  Brian K. Canfield,et al.  Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays , 2005 .

[24]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .