Mechanism of chromatin remodelling revealed by the Snf2-nucleosome structure

[1]  Zhucheng Chen,et al.  Structure and regulation of the chromatin remodeller ISWI , 2016, Nature.

[2]  X. Fang,et al.  Structure of chromatin remodeler Swi2/Snf2 in the resting state , 2016, Nature Structural &Molecular Biology.

[3]  H. Szerlong,et al.  Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. , 2016, Molecular cell.

[4]  William L. Hwang,et al.  Stepwise nucleosome translocation by RSC remodeling complexes , 2016, eLife.

[5]  David A Agard,et al.  Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage. , 2015, Journal of structural biology.

[6]  S. Scheres,et al.  Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging , 2015, Structure.

[7]  Guanghui Yang,et al.  Sampling the conformational space of the catalytic subunit of human γ-secretase , 2015, bioRxiv.

[8]  Bruno Rossion,et al.  Figures and figure supplements , 2014 .

[9]  M. Washburn,et al.  Structural analyses of the chromatin remodeling enzymes INO80-C and SWR-C , 2015, Nature Communications.

[10]  Ruedi Aebersold,et al.  Structure and Subunit Topology of the INO80 Chromatin Remodeler and Its Nucleosome Complex , 2013, Cell.

[11]  Ruedi Aebersold,et al.  Molecular Architecture of the ATP-Dependent Chromatin-Remodeling Complex SWR1 , 2013, Cell.

[12]  P. Becker,et al.  Nucleosome sliding mechanisms: new twists in a looped history , 2013, Nature Structural &Molecular Biology.

[13]  T. Owen-Hughes,et al.  Mechanisms and Functions of ATP-Dependent Chromatin-Remodeling Enzymes , 2013, Cell.

[14]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[15]  P. Becker,et al.  The ATPase domain of ISWI is an autonomous nucleosome remodeling machine , 2012, Nature Structural &Molecular Biology.

[16]  B. Cairns,et al.  Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes , 2012, Nature.

[17]  Shaoxia Chen,et al.  Prevention of overfitting in cryo-EM structure determination , 2012, Nature Methods.

[18]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[19]  M. L. Dechassa,et al.  Disparity in the DNA translocase domains of SWI/SNF and ISW2 , 2012, Nucleic acids research.

[20]  A. Leschziner Electron microscopy studies of nucleosome remodelers. , 2011, Current opinion in structural biology.

[21]  T. Richmond,et al.  Structure and mechanism of the chromatin remodelling factor ISW1a , 2011, Nature.

[22]  Song Tan,et al.  Nucleosome structural studies. , 2011, Current opinion in structural biology.

[23]  Jeffrey N. McKnight,et al.  The chromodomains of the Chd1 chromatin remodeler regulate DNA access to the ATPase motor. , 2010, Molecular cell.

[24]  Song Tan,et al.  Structure of RCC1 chromatin factor bound to the nucleosome core particle , 2010, Nature.

[25]  Steven J Ludtke,et al.  3-D structures of macromolecules using single-particle analysis in EMAN. , 2010, Methods in molecular biology.

[26]  Holger Stark,et al.  GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. , 2010, Methods in enzymology.

[27]  Charles M. Rice,et al.  Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism , 2009, Proceedings of the National Academy of Sciences.

[28]  Yifan Cheng,et al.  The chromatin remodeler ACF acts as a dimeric motor to space nucleosomes , 2009, Nature.

[29]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[30]  C. Peterson,et al.  Architecture of the SWI/SNF-Nucleosome Complex , 2008, Molecular and Cellular Biology.

[31]  H. Szerlong,et al.  The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases , 2008, Nature Structural &Molecular Biology.

[32]  T. Richmond,et al.  DNA stretching and extreme kinking in the nucleosome core. , 2007, Journal of molecular biology.

[33]  Bradley R. Cairns,et al.  Chromatin remodelling: the industrial revolution of DNA around histones , 2006, Nature Reviews Molecular Cell Biology.

[34]  M. Zofall,et al.  Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome , 2006, Nature Structural &Molecular Biology.

[35]  Anjanabha Saha,et al.  Chromatin remodeling through directional DNA translocation from an internal nucleosomal site , 2005, Nature Structural &Molecular Biology.

[36]  C. Peterson,et al.  A Conserved Swi2/Snf2 ATPase Motif Couples ATP Hydrolysis to Chromatin Remodeling , 2005, Molecular and Cellular Biology.

[37]  C. Körner,et al.  X-Ray Structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA , 2005, Cell.

[38]  R. Kingston,et al.  Swapping function of two chromatin remodeling complexes. , 2005, Molecular cell.

[39]  R. Tjian,et al.  Structural studies of the human PBAF chromatin-remodeling complex. , 2005, Structure.

[40]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[41]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[42]  W. Hörz,et al.  ATP-dependent nucleosome remodeling. , 2002, Annual review of biochemistry.

[43]  J. Widom,et al.  New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. , 1998, Journal of molecular biology.

[44]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[45]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.