Continuous categories revisited.

Generalizing the fact that Scott's continuous lattices form the equational hull of algebraic lattices, we describe an equational hull of locally finitely presentable categories as consisting of precontinuous categories.

[1]  Oswald Wyler Algebraic theories of continuous lattices , 1981 .

[2]  Distributive laws for pseudomonads II , 2004 .

[3]  Robert Rosebrugh,et al.  A basic distributive law , 2002 .

[4]  André Joyal,et al.  Continuous categories and exponentiable toposes , 1982 .

[5]  A. Kock Monads for which Structures are Adjoint to Units , 1995 .

[6]  J. Adámek,et al.  HOW LARGE ARE LEFT EXACT FUNCTORS , 2001 .

[7]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[8]  F. Marmolejo,et al.  Distributive laws for pseudomonads. , 1999 .

[9]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[10]  F. W. Lawvere,et al.  HOW ALGEBRAIC IS ALGEBRA , 2001 .

[11]  F. William Lawvere,et al.  Ordinal sums and equational doctrines , 1969 .

[12]  F. Marmolejo Doctrines Whose Structure Forms a Fully Faithful Adjoint String , 1997 .

[13]  Alan Day Filter monads, continuous lattices and closure systems , 1975 .

[14]  F. Marmolejo,et al.  Beck's theorem for pseudo-monads , 2002 .

[15]  J. Adámek,et al.  On algebraically exact categories and essential localiza-tions of varieties , 2001 .

[16]  Brian Day,et al.  Monoidal Bicategories and Hopf Algebroids , 1997 .

[17]  Věra Trnková,et al.  On descriptive classification of set-functors. II. , 1971 .

[18]  Hans-Dieter Donder,et al.  Regularity of ultrafilters and the core model , 1988 .