Continuous categories revisited.
暂无分享,去创建一个
[1] Oswald Wyler. Algebraic theories of continuous lattices , 1981 .
[2] Distributive laws for pseudomonads II , 2004 .
[3] Robert Rosebrugh,et al. A basic distributive law , 2002 .
[4] André Joyal,et al. Continuous categories and exponentiable toposes , 1982 .
[5] A. Kock. Monads for which Structures are Adjoint to Units , 1995 .
[6] J. Adámek,et al. HOW LARGE ARE LEFT EXACT FUNCTORS , 2001 .
[7] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[8] F. Marmolejo,et al. Distributive laws for pseudomonads. , 1999 .
[9] A. Grothendieck,et al. Théorie des Topos et Cohomologie Etale des Schémas , 1972 .
[10] F. W. Lawvere,et al. HOW ALGEBRAIC IS ALGEBRA , 2001 .
[11] F. William Lawvere,et al. Ordinal sums and equational doctrines , 1969 .
[12] F. Marmolejo. Doctrines Whose Structure Forms a Fully Faithful Adjoint String , 1997 .
[13] Alan Day. Filter monads, continuous lattices and closure systems , 1975 .
[14] F. Marmolejo,et al. Beck's theorem for pseudo-monads , 2002 .
[15] J. Adámek,et al. On algebraically exact categories and essential localiza-tions of varieties , 2001 .
[16] Brian Day,et al. Monoidal Bicategories and Hopf Algebroids , 1997 .
[17] Věra Trnková,et al. On descriptive classification of set-functors. II. , 1971 .
[18] Hans-Dieter Donder,et al. Regularity of ultrafilters and the core model , 1988 .