Development of a novel soft parallel robot equipped with polymeric artificial muscles

This paper presents the design, analysis and fabrication of a novel low-cost soft parallel robot for biomedical applications, including bio-micromanipulation devices. The robot consists of two active flexible polymer actuator-based links, which are connected to two rigid links by means of flexible joints. A mathematical model is established between the input voltage to the polymer actuators and the robot's end effector position. The robot has two degrees-of-freedom, making it suitable for handling planar micromanipulation tasks. Moreover, a number of robots can be configured to operate in a cooperative manner for increasing micromanipulation dexterity. Finally, the experimental results demonstrate two main motion modes of the robot.

[1]  Matteo Cianchetti,et al.  Soft Robotics: New Perspectives for Robot Bodyware and Control , 2014, Front. Bioeng. Biotechnol..

[2]  M. Shahinpoor Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review , 2003 .

[3]  Mohsen Shahinpoor,et al.  IPMC microgripper research and development , 2008 .

[4]  Michael Goldfarb,et al.  A flexure-based gripper for small-scale manipulation , 1999, Robotica.

[5]  L. Buckley,et al.  Fiber optic strain measurements using an optically-active polymer , 1992 .

[6]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[7]  Abbas Z. Kouzani,et al.  Electrochemical fabrication and modelling of mechanical behavior of a tri-layer polymer actuator , 2011 .

[8]  Abbas Z. Kouzani,et al.  Nonlinear large deformation dynamic analysis of electroactive polymer actuators , 2015 .

[9]  Ronald Lumia,et al.  Design and test of IPMC artificial muscle microgripper , 2008 .

[10]  Majid Moavenian,et al.  Modelling and robust control of a soft robot based on conjugated polymer actuators , 2011, Int. J. Model. Identif. Control..

[11]  Mohsen Shahinpoor,et al.  Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles , 2004 .

[12]  Jaydev P Desai,et al.  Engineering approaches to biomanipulation. , 2007, Annual review of biomedical engineering.

[13]  Mohsen Shahinpoor,et al.  Adaptive tuning of a 2DOF controller for robust cell manipulation using IPMC actuators , 2011 .

[14]  M. Shahinpoor Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles , 1992 .

[15]  Andrew McDaid,et al.  An IPMC actuated robotic surgery end effector with force sensing , 2013 .

[16]  Madan M. Gupta,et al.  Overview of the development of a visual based automated bio -micromanipulation system , 2007 .

[17]  Abbas Z. Kouzani,et al.  Nonlinear dynamic modeling of ionic polymer conductive network composite actuators using rigid finite element method , 2014 .

[18]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[19]  Geoffrey M. Spinks,et al.  Conductive Electroactive Polymers: Intelligent Materials Systems , 1997 .

[20]  Andrew McDaid,et al.  Design, Analysis, and Control of a Novel Safe Cell Micromanipulation System With IPMC Actuators , 2013 .

[21]  Majid Moavenian,et al.  Dynamic modeling and robust control of an L-shaped microrobot based on fast trilayer polypyrrole-bending actuators , 2013 .

[22]  John David Wyndham Madden,et al.  Conducting polymer actuators , 2000 .

[23]  Majid Moavenian,et al.  Finite element modelling and robust control of fast trilayer polypyrrole bending actuators , 2011 .

[24]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[25]  George J. Pappas,et al.  Single Cell Manipulation using Ferromagnetic Composite Microtransporters , 2010 .

[26]  S C Burgess,et al.  Multi-modal locomotion: from animal to application , 2013, Bioinspiration & biomimetics.

[27]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[28]  Masoud Tahani,et al.  Analytical dynamic modeling of fast trilayer polypyrrole bending actuators , 2011 .

[29]  Kevin A. Snook,et al.  縦方向電界場中で曲げたPIN-PMN-PT単結晶の強度 , 2011 .

[30]  Toshi Takamori,et al.  Multi-DOF device for soft micromanipulation consisting of soft gel actuator elements , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[31]  Keivan Torabi,et al.  Robust control of conjugated polymer actuators considering the spatio-temporal dynamics , 2012, J. Syst. Control. Eng..

[32]  Lin Yuanhui,et al.  フォトレジスト上のパリレンC(POP):ポリマー/金属ナノワイヤ製造のための低温スペーサ技術 , 2011 .

[33]  E. Smela Conjugated Polymer Actuators for Biomedical Applications , 2003 .

[34]  Xiaobo Tan,et al.  Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin , 2010, IEEE/ASME Transactions on Mechatronics.

[35]  Majid Moavenian,et al.  Takagi-Sugeno fuzzy modelling and parallel distributed compensation control of conducting polymer actuators , 2010 .

[36]  Ilie Talpasanu,et al.  Micro and nano manipulations for biomedical applications , 2008 .

[37]  Toribio F. Otero,et al.  Characterization of triple layers , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.