Airborne Lidar Sampling Strategies to Enhance Forest Aboveground Biomass Estimation from Landsat Imagery

[1]  Joanne C. White,et al.  Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots , 2018 .

[2]  Arshad Ali,et al.  Tree crown complementarity links positive functional diversity and aboveground biomass along large-scale ecological gradients in tropical forests. , 2019, The Science of the total environment.

[3]  M. Holopainen,et al.  Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information , 2015 .

[4]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[5]  Konstantinos Papathanassiou,et al.  Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches , 2018, Remote. Sens..

[6]  Guoqing Sun,et al.  Forest Biomass Mapping of Northeastern China Using GLAS and MODIS Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  R. Yanai,et al.  Sampling effort and uncertainty in leaf litterfall mass and nutrient flux in northern hardwood forests , 2017 .

[8]  Zheng Niu,et al.  Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via stratified random sampling , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[9]  F. Maignan,et al.  Normalization of the directional effects in NOAA–AVHRR reflectance measurements for an improved monitoring of vegetation cycles , 2006 .

[10]  J. Hyyppä,et al.  Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .

[11]  Rei Sonobe,et al.  Assessing the suitability of data from Sentinel-1A and 2A for crop classification , 2017 .

[12]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[13]  Claudia Notarnicola,et al.  Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates , 2016, Remote. Sens..

[14]  Maggi Kelly,et al.  Mapping forests with Lidar provides flexible, accurate data with many uses , 2015 .

[15]  J. Chen,et al.  Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters. , 2016, Optics express.

[16]  Qi Chen,et al.  Examining effective use of data sources and modeling algorithms for improving biomass estimation in a moist tropical forest of the Brazilian Amazon , 2017, Int. J. Digit. Earth.

[17]  Sumith Pathirana,et al.  Estimating above-ground biomass by fusion of LiDAR and multispectral data in subtropical woody plant communities in topographically complex terrain in North-eastern Australia , 2014, Journal of Forestry Research.

[18]  Guangxing Wang,et al.  Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation , 2016, Remote. Sens..

[19]  J. Im,et al.  Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest , 2013 .

[20]  M. Mitchell,et al.  Measurements of wet and dry deposition in a Northern Hardwood forest , 1989 .

[21]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[22]  Richard A. Birdsey,et al.  Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest , 2014 .

[23]  Chengquan Huang,et al.  Annual forest aboveground biomass changes mapped using ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for Guangdong province, China , 2018, Agricultural and Forest Meteorology.

[24]  Laura Chasmer,et al.  Multisensor and Multispectral LiDAR Characterization and Classification of a Forest Environment , 2016 .

[25]  Nicholas C. Coops,et al.  Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[26]  Nicholas C. Coops,et al.  Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass , 2013 .

[27]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[28]  Janet E. Nichol,et al.  Improved Biomass Estimation Using the Texture Parameters of Two High-Resolution Optical Sensors , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[29]  W. Ju,et al.  Combining remote sensing imagery and forest age inventory for biomass mapping. , 2007, Journal of environmental management.

[30]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[31]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[32]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[33]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[34]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[35]  Carlos Alberto Silva,et al.  Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling , 2019, Remote. Sens..

[36]  Sabine Vanhuysse,et al.  Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application , 2018 .

[37]  N. Coops,et al.  Update of forest inventory data with lidar and high spatial resolution satellite imagery , 2008 .

[38]  Mukunda Dev Behera,et al.  Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest , 2018, Applied Geography.

[39]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[40]  Lauchlan H. Fraser,et al.  A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada) , 2017 .

[42]  Mehrez Zribi,et al.  Evaluation of ALOS/PALSAR L-Band Data for the Estimation of Eucalyptus Plantations Aboveground Biomass in Brazil , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[43]  J. Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning , 2004 .

[44]  C. Marchand,et al.  Allometric models to estimate above-ground biomass and carbon stocks in Rhizophora apiculata tropical managed mangrove forests (Southern Viet Nam) , 2019, Forest Ecology and Management.

[45]  Chaoyang Fang,et al.  Evaluation of Goddard’s LiDAR, hyperspectral, and thermal data products for mapping urban land-cover types , 2018 .

[46]  Ho Tong Minh Dinh,et al.  Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas , 2017, Remote. Sens..

[47]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[48]  Joanne C. White,et al.  Integration of Landsat time series and field plots for forest productivity estimates in decision support models , 2016 .

[49]  E. Næsset,et al.  Subalpine zone delineation using LiDAR and Landsat imagery , 2012 .

[50]  David Saah,et al.  Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass , 2012 .

[51]  Christiaan van der Tol,et al.  Modeling forest above-ground biomass dynamics using multi-source data and incorporated models: A case study over the qilian mountains , 2017 .

[52]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[53]  G. Hay,et al.  An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA , 2011 .

[54]  Gang Chen,et al.  Article in Press G Model International Journal of Applied Earth Observation and Geoinformation a Geobia Framework to Estimate Forest Parameters from Lidar Transects, Quickbird Imagery and Machine Learning: a Case Study in Quebec, Canada , 2022 .