Modeling Large-deformation-induced Microflow in Soft Biological Tissues

The homogenization approach to multiscale modeling of soft biological tissues is presented. The homogenized model describes the relationship between the macroscopic hereditary creep behavior and the microflow in a fluid-saturated dual-porous medium at the microscopic level. The micromodel is based on Biot’s system for quasistatic deformation processes, modified for the updated Lagrangian formulation to account for coupling the fluid diffusion through a porous solid undergoing large deformation. Its microstructure is constituted by fluid-filled inclusions embedded in the porous matrix. The tangential stiffness coefficients and the retardation stress for the macromodel are derived for a time-stepping algorithm. Numerical examples are discussed, showing the strong potential of the model for simulations of deformation-driven physiological processes at the microscopic scale.

[1]  Noboru Kikuchi,et al.  Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method , 1998 .

[2]  Ajh Arjan Frijns,et al.  A four-component mixture theory applied to cartilaginous tissues : numerical modelling and experiments , 2000 .

[3]  N. Kikuchi,et al.  Simulation of the multi-scale convergence in computational homogenization approaches , 2000 .

[4]  JD Jan Janssen,et al.  A validation of the quadriphasic mixture theory for intervertebral disc tissue , 1997 .

[5]  Naoki Takano,et al.  Microstructure-based evaluation of the influence of woven architecture on permeability by asymptotic homogenization theory , 2002 .

[6]  D Pflaster,et al.  A poroelastic finite element formulation including transport and swelling in soft tissue structures. , 1996, Journal of biomechanical engineering.

[7]  Eduard Rohan,et al.  Sensitivity strategies in modelling heterogeneous media undergoing finite deformation , 2003, Math. Comput. Simul..

[8]  D. Ingber Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. , 2002, Circulation research.

[9]  Andrey L. Piatnitski,et al.  Singular Double Porosity Model , 2001 .

[10]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[11]  Abimael F. D. Loula,et al.  Micromechanical computational modeling of secondary consolidation and hereditary creep in soils , 2001 .

[12]  Jmrj Jacques Huyghe,et al.  Finite deformation theory of hierarchically arranged porous solids. II: Constitutive behaviour , 1995 .

[13]  P. Donato,et al.  An introduction to homogenization , 2000 .

[14]  Ralph E. Showalter,et al.  Single‐phase flow in composite poroelastic media , 2002 .

[15]  A. Srinivasa,et al.  Diffusion of a fluid through an elastic solid undergoing large deformation , 2004 .

[16]  Ralph E. Showalter,et al.  Double-diffusion models from a highly-heterogeneous medium☆ , 2004 .

[17]  U. Hornung Homogenization and porous media , 1996 .

[18]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[19]  J. L. Ferrín,et al.  Homogenizing the acoustic properties of the seabed, part II , 2001 .

[20]  Eduard Rohan,et al.  Modelling heart tissue using a composite muscle model with blood perfusion , 2003 .

[21]  Miroslav Holeček,et al.  Hyperelastic model of a material which microstructure is formed by ¿balls and springs¿ , 2006 .

[22]  Jmrj Jacques Huyghe,et al.  Finite deformation theory of hierarchically arranged porous solids - I. Balance of mass and momentum. , 1995 .

[23]  James P. Keener,et al.  Mathematical physiology , 1998 .

[24]  G. Allaire Homogenization and two-scale convergence , 1992 .

[25]  van Dh Dick Campen,et al.  Biomechanics of the heart muscle , 1994 .

[26]  Doina Cioranescu,et al.  Homogenization of Reticulated Structures , 1999 .

[27]  Jd Jan Janssen,et al.  Quadriphasic mechanics of swelling incompressible porous media , 1997 .

[28]  Naoki Takano,et al.  The formulation of homogenization method applied to large deformation problem for composite materials , 2000 .

[29]  H. Miyazaki,et al.  A newly designed tensile tester for cells and its application to fibroblasts. , 2000, Journal of biomechanics.

[30]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[31]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[32]  Eduard Rohan,et al.  Numerical modelling and homogenized constitutive law of large deforming fluid saturated heterogeneous solids , 2006 .

[33]  J. Tarbell,et al.  Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. , 2000, American journal of physiology. Heart and circulatory physiology.

[34]  John H. Cushman,et al.  Multiscale flow and deformation in hydrophilic swelling porous media , 1996 .

[35]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[36]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .