Accuracy of topographic maps derived from ERS-1 interferometric radar

An interferometric radar technique for topographic mapping of surfaces promises a high-resolution approach to the generation of digital elevation models. The authors present analyses of data collected by the synthetic aperture radar instrument on-board the ERS-1 satellite on successive orbits. Use of a single satellite in a nearly repeating orbit is attractive for reducing cost and spaceborne hardware complexity; also it permits inference of changes in the surface from the correlation properties of the radar echoes. The data have been reduced to correlation maps and digital elevation models. The correlation maps show that temporal correlation decreases significantly with time, but not necessarily at a constant well-defined rate, likely depending on environmental factors. When correlation among passes remains high, however, it is possible to form digital elevation models. Analyses of noise expected in ERS-1 interferometric data collected over Alaska and the southwestern United States indicate that maps with relative errors less than 5 m rms are possible in some regions. However, orbit uncertainties imply that tie points are required in order to reduce absolute height errors to a similar magnitude. The authors find that about 6 tie points per 40/spl times/40 km scene with 5 m rms or better height accuracy are needed to keep systematic map height errors below 5 m rms. The performance of the ERS-1 radar system for topographic applications, though useful for a variety of regional and local discipline studies, may be improved with respect to temporal decorrelation errors and absolute height acuity by modifying the orbit repeat period and incorporating precise orbit determination techniques. The resulting implementation will meet many, but not all, objectives of a global mapping mission. >