Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain.

[1]  Shuming Nie,et al.  Bioconjugated quantum dots for in vivo molecular and cellular imaging. , 2008, Advanced drug delivery reviews.

[2]  Andrew Y. Wang,et al.  Bright and color-saturated emission from blue light emitting diodes based on solution-processed colloidal nanocrystal quantum dots , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[3]  Andrew Y. Wang,et al.  Bright and color-saturated emission from blue light-emitting diodes based on solution-processed colloidal nanocrystal quantum dots. , 2007 .

[4]  Lin-Wang Wang,et al.  Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange , 2007, Science.

[5]  Omkaram Nalamasu,et al.  Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. , 2007, Nature nanotechnology.

[6]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[7]  H. Johnson,et al.  Quantum confinement induced strain in quantum dots , 2007 .

[8]  K. Ishibashi,et al.  Direct observation of the deformation and the band gap change from an individual single-walled carbon nanotube under uniaxial strain. , 2007, Nano letters.

[9]  R. Superfine,et al.  Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device. , 2007, Nature nanotechnology.

[10]  P. Mulvaney,et al.  From Cd-rich to se-rich--the manipulation of CdSe nanocrystal surface stoichiometry. , 2007, Journal of the American Chemical Society.

[11]  Yusheng Zhao,et al.  Comparative studies of compressibility between nanocrystalline and bulk nickel , 2007 .

[12]  D. Oron,et al.  Multiexcitons in type-II colloidal semiconductor quantum dots , 2007 .

[13]  X. Gong,et al.  Ab Initio All-Electron Calculation of Absolute Volume Deformation Potentials of IV-IV, III-V, and II-VI Semiconductors: The Chemical Trends , 2006 .

[14]  James McBride,et al.  Structural basis for near unity quantum yield core/shell nanostructures. , 2006, Nano letters.

[15]  M. Lagally,et al.  Elastically relaxed free-standing strained-silicon nanomembranes , 2006, Nature materials.

[16]  X. Zhong,et al.  Synthesis, Characterization, and Spectroscopy of Type‐II Core/Shell Semiconductor Nanocrystals with ZnTe Cores , 2005 .

[17]  L. Samuelson,et al.  Strain effects on individual quantum dots: Dependence of cap layer thickness , 2005 .

[18]  Jagjit Nanda,et al.  Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. , 2005, Journal of the American Chemical Society.

[19]  M. Petruska,et al.  Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. , 2005, Nano letters.

[20]  Sadao Adachi,et al.  Properties of Group-IV, III-V and II-VI Semiconductors: Adachi/Properties of Group-IV, III-V and II-VI Semiconductors , 2005 .

[21]  A. P. Alivisatos,et al.  First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic growth of CdSe nanocrystals. , 2005, Journal of Physical Chemistry B.

[22]  A. Zunger,et al.  Strain-induced interfacial hole localization in self-assembled quantum dots: Compressive InAs/ GaAs versus tensile InAs/ InSb , 2004 .

[23]  R. Meulenberg,et al.  Compressive and tensile stress in colloidal CdSe semiconductor quantum dots , 2004 .

[24]  P. Chou,et al.  Spectroscopy and femtosecond dynamics of type-II CdSe/ZnTe core-shell semiconductor synthesized via the CdO precursor , 2004 .

[25]  Lin-wang Wang,et al.  Deformation potentials of CdSe quantum dots , 2004 .

[26]  C. Lamberti The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films , 2004 .

[27]  Oliver Benson,et al.  Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality , 2003 .

[28]  Xiaogang Peng,et al.  Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals , 2003 .

[29]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[30]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[31]  Xiaobo Chen,et al.  Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures , 2003 .

[32]  A. P. Alivisatos,et al.  Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. , 2002, Journal of the American Chemical Society.

[33]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[34]  T. Okazaki,et al.  Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes , 2002, Nature.

[35]  Suhuai Wei,et al.  Structure stability and carrier localization in Cd X ( X = S , S e , Te ) semiconductors , 2000 .

[36]  A. Zunger,et al.  Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends , 1999 .

[37]  A. Zunger,et al.  Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals , 1998 .

[38]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[39]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[40]  T. Proffen,et al.  DISCUS: a program for diffuse scattering and defect‐structure simulation , 1997 .

[41]  G. Ceder,et al.  Three-dimensional epitaxy: Thermodynamic stability range of coherent germanium nanocrystallites in silicon , 1996 .

[42]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[43]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[44]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[45]  M. Steigerwald,et al.  X‐ray structural characterization of larger CdSe semiconductor clusters , 1989 .

[46]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[47]  S. Tretiak,et al.  Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals. , 2007, Nano letters (Print).

[48]  安達 定雄,et al.  Properties of group-IV, III-V and II-VI semiconductors , 2005 .

[49]  Alexander L. Efros,et al.  Interband absorption of light in a semiconductor sphere , 2005 .

[50]  Christopher B. Murray,et al.  Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites , 2005 .

[51]  K. Brunner,et al.  Si/Ge nanostructures , 2002 .

[52]  S. Tolbert,et al.  High-pressure structural transformations in semiconductor nanocrystals. , 1995, Annual review of physical chemistry.

[53]  Van de Walle CG Band lineups and deformation potentials in the model-solid theory. , 1989, Physical review. B, Condensed matter.