Face exemplars selection from video streams for online learning

This paper tackles the problem of online acquisition of exemplars for dynamic updating of classifiers for facial analysis. Most facial analysis systems apply a previously computed classifier to a set of images, or recently to the output of real-time face detection systems. Here we describe an approach to select significant detected faces during interactive sessions in order to learn and modify online, with the initial help of an expert, a classifier for a given task. Preliminary experiments are reported related to gender recognition.

[1]  Frédéric Gosselin,et al.  Bubbles: a technique to reveal the use of information in recognition tasks , 2001, Vision Research.

[2]  Guerra Artal,et al.  Contribuciones al seguimiento visual precategórico , 2002 .

[3]  B. de Gelder,et al.  Beyond localisation: a dynamical dual route account of face recognition. , 2001, Acta psychologica.

[4]  Oscar Déniz-Suárez,et al.  Who are you? [face recognition] , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[6]  Luis Torres,et al.  Automatic face recognition for video indexing applications , 2002, Pattern Recognit..

[7]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Modesto Castrillón Santana,et al.  ENCARA: real-time detection of frontal faces , 2003, ICIP.

[9]  Oscar Déniz-Suárez,et al.  Real-time detection of faces in video streams , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[10]  Matthew Turk,et al.  Computer vision in the interface , 2004, CACM.

[11]  Luis Torres,et al.  Face recognition of video sequences in a MPEG-7 context using a global eigen approach , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[12]  B. Schiele,et al.  Fast and Robust Face Finding via Local Context , 2003 .

[13]  Javier Melenchón,et al.  On-the-Fly Training , 2004, AMDO.

[14]  Hans Jørgen Andersen,et al.  Physics-based modelling of human skin colour under mixed illuminants , 2001, Robotics Auton. Syst..

[15]  H. Bülthoff,et al.  Learning to recognize objects , 1999, Trends in Cognitive Sciences.

[16]  Robert Frischholz,et al.  BioID: A Multimodal Biometric Identification System , 2000, Computer.

[17]  Heinrich H. Bülthoff,et al.  Automatic acquisition of exemplar-based representations for recognition from image sequences , 2001, CVPR 2001.

[18]  Bruce Reider The Eye of the Beholder , 2003, The American journal of sports medicine.

[19]  Jun Fan,et al.  Online face recognition system for videos based on modified probabilistic neural networks , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[20]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[21]  T. Poggio,et al.  I think I know that face... , 1996, Nature.

[22]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[23]  Lijin Aryananda,et al.  Recognizing and remembering individuals: online and unsupervised face recognition for humanoid robot , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Shaohua Kevin Zhou,et al.  Exemplar-based face recognition from video , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[25]  Jean-Philippe Thiran,et al.  The BANCA Database and Evaluation Protocol , 2003, AVBPA.

[26]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[27]  Alex Pentland,et al.  Looking at People: Sensing for Ubiquitous and Wearable Computing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ming-Hsuan Yang,et al.  Learning Gender with Support Faces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[30]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..