Transition from conventional lasers to plasmonic spasers: a review

In this paper, we have reviewed laser technology and its applications in different areas. Overview of different kinds of lasers used for number of applications in real world have been presented. Moreover, this review paper covers technology advancement from the last decades along with providing a detailed transition from simple lasers to nano-sized lasers, also known as spasers, which are based on plasmonic nanoparticles. The main focus of this review study is to provide deep insights of nanolasers, structures, materials, techniques and provides a bright path for future researchers to study the contribution of different workgroups with the ease of using this single platform. We have also provided the details of different materials used and analyzed by different researchers and upto what extent they were stood successful in designing efficient spaser design that led toward optimal features.

[1]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[2]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[3]  Dieter Bimberg,et al.  Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects , 2015 .

[4]  Jun Zhou,et al.  Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser , 2012 .

[5]  Malin Premaratne,et al.  Spaser made of graphene and carbon nanotubes. , 2014, ACS nano.

[6]  Vladimir M. Shalaev,et al.  Highly directional spaser array for the red wavelength region , 2014 .

[7]  A. Kildishev,et al.  Ten years of spasers and plasmonic nanolasers , 2020, Light: Science & Applications.

[8]  Arash Ahmadivand,et al.  Toroidal Dipole-Enhanced Third Harmonic Generation of Deep Ultraviolet Light Using Plasmonic Meta-atoms. , 2019, Nano letters.

[9]  P. Gu,et al.  Low threshold spaser based on deep-subwavelength spherical hyperbolic metamaterial cavities , 2017 .

[10]  Peixiang Lu,et al.  Method for direct observation of Bloch oscillations in semiconductors. , 2018, Optics express.

[11]  Younan Xia,et al.  Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. , 2010, Nano letters.

[12]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[13]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[14]  Stephan W Koch,et al.  Physics of Optoelectronic Devices , 1995 .

[15]  Junqiao Wang,et al.  A multi-wavelength SPASER based on plasmonic tetramer cavity , 2019, Journal of Optics.

[16]  L. Wang,et al.  Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass , 2020, Light: Science & Applications.

[17]  R. Ahuja,et al.  Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings , 2020, Materials Today.

[18]  C. Ning,et al.  Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions , 2017 .

[19]  Chin-Lin Chen Elements of Optoelectronics and Fiber Optics , 1995 .

[20]  M. Premaratne,et al.  Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser , 2015 .

[21]  George C. Schatz,et al.  Lasing from Finite Plasmonic Nanoparticle Lattices , 2020, ACS Photonics.

[22]  D. Hanna,et al.  Principles of Lasers , 2011 .

[23]  I. Vurgaftman,et al.  A room-temperature semiconductor spaser operating near 1.5 μm. , 2011, Optics express.

[24]  Jorg Hader,et al.  Microscopic modeling of gain and luminescence in semiconductors , 2003 .

[25]  Hongyuan Chen,et al.  Spaser Nanoparticles for Ultranarrow Bandwidth STED Super‐Resolution Imaging , 2020, Advanced materials.

[26]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[27]  Shumin Jiang,et al.  Efficient surface plasmon amplification in gain-assisted silver nanotubes and associated dimers , 2015 .

[28]  K. Bourzac Quantum dots go on display , 2013, Nature.

[29]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[30]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[31]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[32]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[33]  G. Zheng,et al.  Simultaneous Enhancement of Bandwidth and Group Index of Slow Light via Metamaterial Induced Transparency With Double Bright Resonators , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Phaedon Avouris,et al.  Radiative lifetime of excitons in carbon nanotubes. , 2005, Nano letters.

[35]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[36]  D. J. Wu,et al.  An active metallic nanomatryushka with two similar super-resonances , 2014 .

[37]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[38]  A. Salandrino,et al.  Electrodynamical Light Trapping Using Whispering-Gallery Resonances in Hyperbolic Cavities , 2014 .

[39]  R. Ma Lasing under ultralow pumping , 2019, Nature Materials.

[40]  Stephen Gray,et al.  Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. , 2005, Optics express.

[41]  M. Weber Handbook of Lasers , 2019 .

[42]  P. Nordlander,et al.  Monolithic metal dimer-on-film structure: new plasmonic properties introduced by the underlying metal. , 2020, Nano letters.

[43]  N. Gadegaard,et al.  Superchiral near fields detect virus structure , 2020, Light, science & applications.

[44]  Andrew Forbes,et al.  Structured Light from Lasers , 2018, Laser & Photonics Reviews.

[45]  Vladimir M. Shalaev,et al.  Unidirectional Spaser in Symmetry-Broken Plasmonic Core-Shell Nanocavity , 2013, Scientific Reports.

[46]  Optoelectronics: The rise of the GeSn laser , 2015 .

[47]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[48]  H. Ho,et al.  Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. , 2014, Chemical Society reviews.

[49]  P. Gu,et al.  Experimental observation of sharp cavity plasmon resonances in dielectric-metal core- shell resonators , 2015 .

[50]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[51]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[52]  Guixin Li,et al.  Nonlinear photonic metasurfaces , 2017 .

[53]  Xavier Le Roux,et al.  Light emission in silicon from carbon nanotubes. , 2015, ACS nano.

[54]  Filippo Menczer,et al.  Erratum: Competition among memes in a world with limited attention , 2013, Scientific Reports.

[55]  L. Wang,et al.  Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass , 2020, Light: Science & Applications.

[56]  N. Pala,et al.  Hybridized plasmons in graphene nanorings for extreme nonlinear optics , 2017 .

[57]  L. Tong,et al.  Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale , 2019, Advanced Optical Materials.

[58]  A. Kildishev,et al.  Ten years of spasers and plasmonic nanolasers , 2020, Light, science & applications.

[59]  Rupert F. Oulton,et al.  Applications of nanolasers , 2018, Nature Nanotechnology.

[60]  Yuri S. Kivshar,et al.  Colloquium : Nonlinear metamaterials , 2014 .

[61]  T. Jia,et al.  Spaser based on Fano resonance in a rod and concentric square ring-disk nanostructure , 2014 .

[62]  R. Ahuja,et al.  The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices , 2020 .

[63]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[64]  M. Richetta,et al.  Laser Pulse Effects on Plasma-Sprayed and Bulk Tungsten , 2017 .

[65]  A. Miura,et al.  Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes. , 2020, The Journal of chemical physics.

[66]  R. Friend,et al.  Metal halide perovskites for light-emitting diodes , 2020, Nature Materials.

[67]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[68]  P. Nordlander,et al.  Plasmon hybridization in nanoshell dimers. , 2005, The Journal of chemical physics.

[69]  Richard W Ziolkowski,et al.  The design and simulated performance of a coated nano-particle laser. , 2007, Optics express.

[70]  B. Miller,et al.  Optical physics of quantum wells , 2020, Quantum Dynamics of Simple Systems.