Molluscan shell proteins: primary structure, origin, and evolution.

In the last few years, the field of molluscan biomineralization has known a tremendous mutation, regarding fundamental concepts on biomineralization regulation as well as regarding the methods of investigation. The most recent advances deal more particularly with the structure of shell biominerals at nanoscale and the identification of an increasing number of shell matrix protein components. Although the matrix is quantitatively a minor constituent in the shell of mollusks (less than 5% w/w), it is, however, the major component that controls different aspects of the shell formation processes: synthesis of transient amorphous minerals and evolution to crystalline phases, choice of the calcium carbonate polymorph (calcite vs aragonite), organization of crystallites in complex shell textures (microstructures). Until recently, the classical paradigm in molluscan shell biomineralization was to consider that the control of shell synthesis was performed primarily by two antagonistic mechanisms: crystal nucleation and growth inhibition. New concepts and emerging models try now to translate a more complex reality, which is remarkably illustrated by the wide variety of shell proteins, characterized since the mid-1990s, and described in this chapter. These proteins cover a broad spectrum of pI, from very acidic to very basic. The primary structure of a number of them is composed of different modules, suggesting that these proteins are multifunctional. Some of them exhibit enzymatic activities. Others may be involved in cell signaling. The oldness of shell proteins is discussed, in relation with the Cambrian appearance of the mollusks as a mineralizing phylum and with the Phanerozoic evolution of this group. Nowadays, the extracellular calcifying shell matrix appears as a whole integrated system, which regulates protein-mineral and protein-protein interactions as well as feedback interactions between the biominerals and the calcifying epithelium that synthesized them. Consequently, the molluscan shell matrix may be a source of bioactive molecules that would offer interesting perspectives in biomaterials and biomedical fields.

[1]  G. Muyzer,et al.  Skeletal matrices, muci, and the origin of invertebrate calcification. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Arul Marie,et al.  Identification of low molecular weight molecules as new components of the nacre organic matrix. , 2006, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[3]  L. Xie,et al.  Cloning and characterization of an mRNA encoding a novel G protein alpha-subunit abundant in mantle and gill of pearl oyster Pinctada fucata. , 2004, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[4]  H. Liao,et al.  Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. , 2000, Biomaterials.

[5]  S. Berland,et al.  Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. , 1992, Tissue & cell.

[6]  T. Eickbush Exon Shuffling in Retrospect , 1999, Science.

[7]  T. Asakura,et al.  Conformational study of silklike peptides modified by the addition of the calcium-binding sequence from the shell nacreous matrix protein MSI60 using 13C CP/MAS NMR spectroscopy. , 2006, Biomacromolecules.

[8]  T. Miyashita,et al.  Similarities in the structure of nacrein, the shell-matrix protein, in a bivalve and a gastropod , 2003 .

[9]  J. Evans,et al.  Structural characterization of the N‐terminal mineral modification domains from the molluscan crystal‐modulating biomineralization proteins, AP7 and AP24 , 2004, Biopolymers.

[10]  M. Fritz,et al.  Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. , 2006, Biophysical journal.

[11]  J. Marxen,et al.  The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. , 2003, Biochimica et biophysica acta.

[12]  R. Seed Shell Growth and Form in the Bivalvia , 1980 .

[13]  M. Schilthuizen,et al.  The convoluted evolution of snail chirality , 2005, Naturwissenschaften.

[14]  H. Nakahara,et al.  Mechanisms and Phylogeny of Mineralization in Biological Systems , 1991, Springer Japan.

[15]  Esther de Boer,et al.  Spatio-temporal expression of a gene encoding a putative RNA-binding protein during the early larval development of the mollusc Patella vulgata , 2001, Development Genes and Evolution.

[16]  R. Takagi,et al.  Complementary DNA Cloning and Characterization of Pearlin, a New Class of Matrix Protein in the Nacreous Layer of Oyster Pearls , 2000, Marine Biotechnology.

[17]  A. Sahni,et al.  Structure, formation and evolution of fossil hard tissues , 1993 .

[18]  K. Weiss,et al.  Evolutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binding phosphoprotein family. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[19]  Guillaume Lecointre,et al.  Classification phylogénétique du vivant , 2001 .

[20]  D. Rhoads,et al.  Skeletal Growth of Aquatic Organisms , 1980 .

[21]  S. Valiyaveettil,et al.  CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. , 2005, Biomacromolecules.

[22]  J. Engel,et al.  Extracellular calcium-binding proteins. , 1996, Current opinion in cell biology.

[23]  Rongqing Zhang,et al.  cDNA cloning and characterization of a novel calmodulin‐like protein from pearl oyster Pinctada fucata , 2005, The FEBS journal.

[24]  K. Simkiss Biomineralization and detoxification , 1977, Calcified Tissue Research.

[25]  Steve Weiner,et al.  Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. , 2006, Journal of structural biology.

[26]  H. Nagasawa,et al.  Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). , 2004, The Biochemical journal.

[27]  L. Margulis,et al.  Evolutionary prerequisites for early Phanerozoic calcareous skeletons. , 1980, Bio Systems.

[28]  Gert Wörheide,et al.  A rapidly evolving secretome builds and patterns a sea shell , 2006, BMC Biology.

[29]  J. Lebel,et al.  Collagen study and regulation of the de novo synthesis by IGF-I in hemocytes from the gastropod mollusc, Haliotis tuberculata. , 2000, The Journal of experimental zoology.

[30]  Rongqing Zhang,et al.  Matrix Proteins in the Outer Shells of Molluscs , 2006, Marine Biotechnology.

[31]  Y. Dauphin Soluble Organic Matrices of the Calcitic Prismatic Shell Layers of Two Pteriomorphid Bivalves , 2003, The Journal of Biological Chemistry.

[32]  T. Samata CA-BINDING GLYCOPROTEINS IN MOLLUSCAN SHELLS WITH DIFFERENT TYPES OF ULTRASTRUCTURE , 1990 .

[33]  S. Weiner Mollusk shell formation: isolation of two organic matrix proteins associated with calcite deposition in the bivalve Mytilus californianus , 1983 .

[34]  M. Barthélémy,et al.  Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. , 2002, European journal of biochemistry.

[35]  Paul K. Hansma,et al.  Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges , 1997 .

[36]  F. Marín,et al.  Large-scale fractionation of molluscan shell matrix. , 2001, Protein expression and purification.

[37]  T. Miyashita,et al.  Evolution of hard-tissue mineralization: comparison of the inner skeletal system and the outer shell system , 2004, Journal of Bone and Mineral Metabolism.

[38]  Cen Zhang,et al.  A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). , 2006, Biochemical and biophysical research communications.

[39]  A. P. Wheeler,et al.  Surface reactive peptides and polymers : discovery and commercialization : developed from a symposium sponsored by the Division of Industrial and Engineering Chemistry at the 197th National Meeting of the American Chemical Society, Dallas, Texas, April 12-13, 1989 , 1991 .

[40]  C. Nielsen Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[41]  M. Fedonkin,et al.  The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.

[42]  J. Evans,et al.  Erratum: Characterization of Two Molluscan Crystal-Modulating Biomineralization Proteins and Identification of Putative Mineral Binding Domains (Biopolymers (2003) 70:4 (522-533)) , 2004 .

[43]  N. Lartillot,et al.  The new animal phylogeny: reliability and implications. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Milet,et al.  The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[45]  N. Adir,et al.  Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules. , 2006, Journal of structural biology.

[46]  D. Maglott,et al.  A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. , 2006, Developmental biology.

[47]  Simon Conway Morris,et al.  Wonderful Crucible@@@The Crucible of Creation: The Burgess Shale and the Rise of Animals. , 1998 .

[48]  S. Weiner,et al.  A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Y. Dauphin Comparison of the soluble matrices of the calcitic prismatic layer of Pinna nobilis (Mollusca, Bivalvia, Pteriomorpha). , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[50]  A. Wanninger,et al.  The expression of an engrailed protein during embryonic shell formation of the tusk‐shell, Antalis entalis (Mollusca, Scaphopoda) , 2001, Evolution & development.

[51]  S. Chiba,et al.  Molecular Evolution and Functionally Important Structures of Molluscan Dermatopontin: Implications for the Origins of Molluscan Shell Matrix Proteins , 2006, Journal of Molecular Evolution.

[52]  J. Clohisy,et al.  Matrix proteins of the teeth of the sea urchin Lytechinus variegatus. , 1986, The Journal of experimental zoology.

[53]  P. Corstjens,et al.  Mucins and Molluscan Calcification , 2000, The Journal of Biological Chemistry.

[54]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[55]  T. Thannhauser,et al.  Comparative analysis of macromolecules in mollusc shells. , 1993, Comparative biochemistry and physiology. B, Comparative biochemistry.

[56]  H. G. Ferreira,et al.  Electrophysiology of the Mantle of Anodonta Cygnea , 1988 .

[57]  K. Weiss,et al.  Genetic basis for the evolution of vertebrate mineralized tissue. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Muyzer,et al.  Immunology and organic geochemistry , 1984 .

[59]  B. Tonomura,et al.  Presence of Protein Complex is Prerequisite for Aragonite Crystallization in the Nacreous Layer , 2003, Marine Biotechnology.

[60]  M. Paine,et al.  Structural characterization of the major extrapallial fluid protein of the mollusc Mytilus edulis: implications for function. , 2005, Biochemistry.

[61]  Takeshi Takeuchi,et al.  Biphasic and Dually Coordinated Expression of the Genes Encoding Major Shell Matrix Proteins in the Pearl Oyster Pinctada fucata , 2005, Marine Biotechnology.

[62]  Frédéric Marin,et al.  Molluscan shell proteins , 2004 .

[63]  Primary structure of a soluble matrix protein of scallop shell: Implications for calcium carbonate biomineralization , 1998 .

[64]  L. Patthy,et al.  Exon shuffling and other ways of module exchange. , 1996, Matrix biology : journal of the International Society for Matrix Biology.

[65]  E. Lopez,et al.  Comparative effects of nacre water-soluble matrix and dexamethasone on the alkaline phosphatase activity of MRC-5 fibroblasts. , 2001, Journal of biomedical materials research.

[66]  S. Weiner,et al.  Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. , 2001, Journal of structural biology.

[67]  Cen Zhang,et al.  Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). , 2004, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[68]  Edmund Buerlein Handbook of Biomineralization , 2007 .

[69]  S. Mann Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry , 2002 .

[70]  R. Kretsinger,et al.  Calcium-binding proteins. , 1976, Annual review of biochemistry.

[71]  C. Slaughter,et al.  Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. , 1989, The Journal of biological chemistry.

[72]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[73]  J. Ferry,et al.  Prokaryotic carbonic anhydrases. , 2000, FEMS microbiology reviews.

[74]  S. Weiner,et al.  Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth In Vitro , 1996 .

[75]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[76]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[77]  S. Weiner,et al.  Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation , 1975, Science.

[78]  S. Weiner,et al.  Biologically Formed Amorphous Calcium Carbonate , 2003, Connective tissue research.

[79]  J. G. Carter Skeletal biomineralization : patterns, processes, and evolutionary trends , 1991 .

[80]  L. Xie,et al.  A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[81]  Artem V. Kouchinsky Shell microstructures in Early Cambrian molluscs , 2000 .

[82]  L. Patthy Genome evolution and the evolution of exon-shuffling--a review. , 1999, Gene.

[83]  T. Samata,et al.  A new matrix protein family related to the nacreous layer formation of Pinctada fucata , 1999, FEBS letters.

[84]  K. Simkiss,et al.  Biomineralization : cell biology and mineral deposition , 1989 .

[85]  A. Wheeler,et al.  Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell. , 1981, Science.

[86]  B. Drake,et al.  Sequence and atomic-force microscopy analysis of a matrix protein from the shell of the oyster Crassostrea virginica , 1992 .

[87]  T Morita,et al.  A carbonic anhydrase from the nacreous layer in oyster pearls. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Cen Zhang,et al.  A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. , 2006, Biochemical and biophysical research communications.

[89]  S. Golubić,et al.  Developmental aspects of biomineralisation in the Polynesian pearl oyster Pinctada margaritifera var , 2001 .

[90]  A. Hidalgo The roles of engrailed. , 1996, Trends in genetics : TIG.

[91]  M. Fritz,et al.  Perlinhibin, a cysteine-, histidine-, and arginine-rich miniprotein from abalone (Haliotis laevigata) nacre, inhibits in vitro calcium carbonate crystallization. , 2007, Biophysical journal.

[92]  H. Liao,et al.  Responses of bone to titania–hydroxyapatite composite and nacreous implants: a preliminary comparison by in situ hybridization , 1997, Journal of materials science. Materials in medicine.

[93]  W. Sun,et al.  Phosphate replicated and replaced microstructure of molluscan shells from the earliest Cambrian of China , 2003 .

[94]  I. Sarashina,et al.  The Complete Primary Structure of Molluscan Shell Protein 1 (MSP-1), an Acidic Glycoprotein in the Shell Matrix of the Scallop Patinopecten yessoensis , 2001, Marine Biotechnology.

[95]  A. P. Wheeler,et al.  Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix , 1988 .

[96]  M. Fritz,et al.  The nacre protein perlucin nucleates growth of calcium carbonate crystals , 2003, Journal of microscopy.

[97]  M. Antonietti,et al.  Amorphous layer around aragonite platelets in nacre. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[98]  K. Simkiss Amorphous Minerals and Theories of Biomineralization , 1991 .

[99]  T. Samata,et al.  Molecular mechanism of the nacreous layer formation in Pinctada maxima. , 2000, Biochemical and biophysical research communications.

[100]  E. Baeuerlein Biomineralization : from biology to biotechnology and medical application , 2004 .

[101]  J. Pais de Barros,et al.  The shell matrix of the freshwater mussel Unio pictorum (Paleoheterodonta, Unionoida) , 2007, The FEBS journal.

[102]  L. Bédouet,et al.  Identification of calconectin, a calcium‐binding protein specifically expressed by the mantle of Pinctada margaritifera , 2006, FEBS letters.

[103]  R. DeSalle,et al.  Homologues of the engrailed gene from five molluscan classes , 1995, FEBS letters.

[104]  H. Nakahara,et al.  An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs , 2005, Calcified Tissue Research.

[105]  Joanna Aizenberg,et al.  Interactions of various skeletal intracrystalline components with calcite crystals , 1993 .

[106]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[107]  H. Liao,et al.  Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study. , 2002, Biomaterials.

[108]  N. Shubin,et al.  Fossils, genes, and the origin of novelty , 2000, Paleobiology.

[109]  S. Popović,et al.  X-ray diffraction study of calcification processes in embryos and larvae of the brooding oyster Ostrea edulis , 1997 .

[110]  P. Layrolle,et al.  Protein mapping of calcium carbonate biominerals by immunogold. , 2007, Biomaterials.

[111]  S. Weiner,et al.  Asprich: A Novel Aspartic Acid‐Rich Protein Family from the Prismatic Shell Matrix of the Bivalve Atrina rigida , 2005, Chembiochem : a European journal of chemical biology.

[112]  P. Witten,et al.  A light‐ and electron‐microscopic study of enzymes in the embryonic shell‐forming tissue of the freshwater snail, Biomphalaria glabrata , 2005 .

[113]  J. Evans,et al.  Model peptide studies of sequence regions in the elastomeric biomineralization protein, Lustrin A. I. The C-domain consensus-PG-, -NVNCT-motif. , 2002, Biopolymers.

[114]  A. Nederbragt,et al.  Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. , 2002, Developmental biology.

[115]  A. R. Palmer Calcification in marine molluscs: how costly is it? , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[116]  K. de Groot,et al.  Screening molluscan cDNA expression libraries with anti-shell matrix antibodies. , 2003, Protein expression and purification.

[117]  S. Weiner,et al.  Mollusk Shell Acidic Proteins: In Search of Individual Functions , 2003, Chembiochem : a European journal of chemical biology.

[118]  W. Dictus,et al.  Cell-lineage and clonal-contribution map of the trochophore larva of Patella vulgata (Mollusca) 1 Both authors contributed equally to this work. 1 , 1997, Mechanisms of Development.

[119]  Rongqing Zhang,et al.  A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata). , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[120]  J. Gibert,et al.  The evolution of engrailed genes after duplication and speciation events , 2002, Development Genes and Evolution.

[121]  Antonio G Checa,et al.  Self-organisation of nacre in the shells of Pterioida (Bivalvia: Mollusca). , 2005, Biomaterials.

[122]  P. Favrel,et al.  Structure and expression of mGDF, a new member of the transforming growth factor-beta superfamily in the bivalve mollusc Crassostrea gigas. , 2000, European journal of biochemistry.

[123]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[124]  J. Evans,et al.  Characterization of two molluscan crystal‐modulating biomineralization proteins and identification of putative mineral binding domains , 2003, Biopolymers.

[125]  S. Berland,et al.  Zona Localization of Shell Matrix Proteins in Mantle of Haliotis tuberculata (Mollusca, Gastropoda) , 2004, Marine Biotechnology.

[126]  S. Mann Mineralization in biological systems , 1983 .

[127]  A. Saleuddin,et al.  The Mode of Formation and the Structure of the Periostracum , 1983 .

[128]  J. Evans,et al.  Molecular characterization of the 30-AA N-terminal mineral interaction domain of the biomineralization protein AP7. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[129]  J. Meldolesi,et al.  Molecular and cellular physiology of intracellular calcium stores. , 1994, Physiological reviews.

[130]  M. Epple,et al.  Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. , 2000, Chemistry.

[131]  N. Chasteen,et al.  A chemical and spectral characterization of the extrapallial fluid of Mytilus edulis. , 1979, Analytical biochemistry.

[132]  Yuya Oaki,et al.  The hierarchical architecture of nacre and its mimetic material. , 2005, Angewandte Chemie.

[133]  J. Kere,et al.  Hemocyte-Mediated Shell Mineralization in the Eastern Oyster , 2004, Science.

[134]  J. Jarosz,et al.  Molluscan immune defenses. , 1997, Archivum immunologiae et therapiae experimentalis.

[135]  T. Ubukata Architectural constraints on the morphogenesis of prismatic structure in Bivalvia , 1994 .

[136]  L. Patthy Modular Assembly of Genes and the Evolution of New Functions , 2003, Genetica.

[137]  Norbert Eichner,et al.  The chitin synthase involved in marine bivalve mollusk shell formation contains a myosin domain , 2006, FEBS letters.

[138]  M. Fritz,et al.  Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. , 2000, Biochemical and biophysical research communications.

[139]  Jiming Hu,et al.  In situ analysis of the organic framework in the prismatic layer of mollusc shell. , 2002, Biomaterials.

[140]  Arul Marie,et al.  Proteomics Analysis of the Nacre Soluble and Insoluble Proteins from the Oyster Pinctada margaritifera , 2007, Marine Biotechnology.

[141]  M. Barthélémy,et al.  Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. , 2000 .

[142]  E. Kniprath Ontogeny of the Molluscan Shell Field: a Review , 1981 .

[143]  L. Xie,et al.  Cloning and Characterization of a Homologous Ca~(2+)/Calmodulin-Dependent Protein Kinase PSKH1 from Pearl Oyster Pinctada fucata , 2005 .

[144]  Frédéric Marin,et al.  A marriage of bone and nacre , 1998, Nature.

[145]  Masato Yano,et al.  Tyrosinase localization in mollusc shells. , 2007, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[146]  M. Fritz,et al.  Perlustrin, a Haliotis laevigata (abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. , 2001, Biochemical and biophysical research communications.

[147]  P. Taylor,et al.  Calcitic Nacreous Ultrastructures in Bryozoans: Implications for Comparative Biomineralization of Lophophorates and Molluscs. , 1995, The Biological bulletin.

[148]  P. Doyle,et al.  Atlas of invertebrate macrofossils , 1985 .

[149]  L. Timmermans Studies On Shell Formation in Molluscs , 1968 .

[150]  S. Weiner Aspartic acid-rich proteins: Major components of the soluble organic matrix of mollusk shells , 1979, Calcified Tissue International.

[151]  Yasushi Hasegawa,et al.  cDNA clonings of shell matrix proteins from scallop shell , 2005, Fisheries Science.

[152]  G. Muyzer,et al.  Evolution: disjunct degeneration of immunological determinants , 1999 .

[153]  J. Evans,et al.  Structure-Function Studies of the Lustrin A Polyelectrolyte Domains, RKSY and D4 , 2003, Connective tissue research.

[154]  S. Hattan,et al.  Purification and Characterization of a Novel Calcium-binding Protein from the Extrapallial Fluid of the Mollusc, Mytilus edulis * , 2001, The Journal of Biological Chemistry.

[155]  F. Marin Molluscan Shell Matrix Characterization by Preparative SDS-PAGE , 2003, TheScientificWorldJournal.

[156]  M. Epple,et al.  Early mineralization in Biomphalaria glabrata: Microscopic and structural results , 2003 .

[157]  W. Gilbert Why genes in pieces? , 1978, Nature.

[158]  J. Evans,et al.  Structural analyses of polyelectrolyte sequence domains within the adhesive elastomeric biomineralization protein Lustrin A , 2002 .

[159]  J. Evans,et al.  Characterization of a Ca(II)-, Mineral-Interactive Polyelectrolyte Sequence from the Adhesive Elastomeric Biomineralization Protein Lustrin A , 2003 .

[160]  M. Fritz,et al.  The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. , 2000, European journal of biochemistry.

[161]  J. Waite,et al.  Quinone-Tanned Scleroproteins , 1983 .

[162]  A. P. Wheeler,et al.  Purification and Characterization of a Shell Matrix Phosphoprotein from the American Oyster , 1991 .

[163]  Masato Yano,et al.  Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. , 2006, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[164]  Dosuk D. Lee The structure and mechanism of growth of calcium carbonate minerals in early stages of shells of the oyster Crassostrea Virginica , 1990 .

[165]  L. Vilarinho,et al.  Organic compounds in the extrapalial fluid and haemolymph of Anodonta cygnea (L.) with emphasis on the seasonal biomineralization process. , 2000, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[166]  A. van Rijk,et al.  Molecular Mechanisms of Exon Shuffling: Illegitimate Recombination , 2003, Genetica.

[167]  E. Kniprath Larval development of the shell and the shell gland inMytilus (Bivalvia) , 1980, Wilhelm Roux's archives of developmental biology.

[168]  C. Lambert,et al.  Antibodies to echinoid larval spicule proteins cross react with the spicular complex in the ascidian Herdmania momus , 1996 .

[169]  John Taylor,et al.  Origin and evolutionary radiation of the Mollusca , 1996 .

[170]  C. Killian,et al.  Development of calcareous skeletal elements in invertebrates. , 2003, Differentiation; research in biological diversity.

[171]  J. Engel Common structural motifs in proteins of the extracellular matrix. , 1991, Current opinion in cell biology.

[172]  J. Marxen,et al.  The Organic Shell Matrix of the Freshwater Snail Biomphalaria glabrata , 1997 .

[173]  A. R. Palmer Relative cost of producing skeletal organic matrix versus calcification: Evidence from marine gastropods , 1983 .

[174]  P. Layrolle,et al.  Caspartin and Calprismin, Two Proteins of the Shell Calcitic Prisms of the Mediterranean Fan Mussel Pinna nobilis* , 2005, Journal of Biological Chemistry.

[175]  K. Simkiss Amorphous minerals in biology , 1994 .

[176]  J. Girard,et al.  Carbonic anhydrase and mobilisation of calcium reserves in the mantle of lamellibranchs , 2005, Calcified Tissue Research.

[177]  S. Gould,et al.  Exaptation—a Missing Term in the Science of Form , 1982, Paleobiology.

[178]  D. Morse,et al.  Purification and characterization of calcium-binding conchiolin shell peptides from the mollusc,Haliotis rufescens, as a function of development , 1988, Journal of Comparative Physiology B.

[179]  O. Bøggild The shell structure of the Mollusks , 1930 .

[180]  R. Morgan Engrailed: Complexity and economy of a multi‐functional transcription factor , 2006, FEBS letters.

[181]  N. Adir,et al.  Purification and functional analysis of a 40 kD protein extracted from the Strombus decorus persicus mollusk shells. , 2006, Biomacromolecules.

[182]  W. Stemmer,et al.  Directed evolution of proteins by exon shuffling , 2001, Nature Biotechnology.

[183]  M. Fritz,et al.  Abalone nacre insoluble matrix induces growth of flat and oriented aragonite crystals. , 2006, Biochemical and biophysical research communications.

[184]  A. Rodríguez-Navarro,et al.  The nature and formation of calcitic columnar prismatic shell layers in pteriomorphian bivalves. , 2005, Biomaterials.

[185]  L. Xie,et al.  A novel carbonic anhydrase from the mantle of the pearl oyster (Pinctada fucata). , 2006, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[186]  E. Kniprath Zur Ontogenese des Schalenfeldes vonLymnaea stagnalis , 1977, Roux's archives of developmental biology.

[187]  M. Levine,et al.  Shell differentiation and engrailed expression in the Ilyanassa embryo , 1998, Development Genes and Evolution.

[188]  N. Watabe,et al.  Various patterns of biomineralization and its phylogenetic significance in bivalve mollusks , 1980 .

[189]  T. Whittam,et al.  Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[190]  S. Berland,et al.  Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. , 1997, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[191]  T. Okamoto,et al.  Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition , 2006, Proceedings of the Royal Society B: Biological Sciences.

[192]  Marc A. Meyers,et al.  Growth and structure in abalone shell , 2005 .

[193]  L. Bédouet,et al.  Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[194]  R. DeSalle,et al.  Molluscan engrailed expression, serial organization, and shell evolution , 2000, Evolution & development.

[195]  I. Sarashina,et al.  Structure and expression of an unusually acidic matrix protein of pearl oyster shells. , 2004, Biochemical and biophysical research communications.

[196]  C. Killian,et al.  Characterization of the Proteins Comprising the Integral Matrix of Strongylocentrotus purpuratus Embryonic Spicules (*) , 1996, The Journal of Biological Chemistry.

[197]  R. D. Thomas,et al.  Evolutionary exploitation of design options by the first animals with hard skeletons. , 2000, Science.

[198]  G. Balavoine,et al.  One or Three Cambrian Radiations? , 1998, Science.

[199]  P. E. Hare Amino Acids in the Proteins from Aragonite and Calcite in the Shells of Mytilus californianus , 1963, Science.

[200]  S. Lindskog Structure and mechanism of carbonic anhydrase. , 1997, Pharmacology & therapeutics.

[201]  J. Engel Domain organizations of modular extracellular matrix proteins and their evolution. , 1996, Matrix biology : journal of the International Society for Matrix Biology.

[202]  S. O. Andersen,et al.  Periostracin — A soluble precursor of sclerotized periostracum inMytilus edulis L. , 1979, Journal of comparative physiology.

[203]  D. P. Grigorʹev,et al.  Ontogeny of minerals , 1965 .

[204]  M. Shimamoto Shell Microstructure of the Veneridae (Bivalvia) and its Phylogenetic Implications , 1986 .

[205]  D. Medaković Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis L. , 2000, Helgoland Marine Research.

[206]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[207]  A. Hall,et al.  The shell structure and mineralogy of the Bivalvia , 1969 .

[208]  Hiroshi Miyamoto,et al.  The Carbonic Anhydrase Domain Protein Nacrein is Expressed in the Epithelial Cells of the Mantle and Acts as a Negative Regulator in Calcification in the Mollusc Pinctada fucata , 2005, Zoological science.

[209]  L. Xie,et al.  A Novel Matrix Protein p10 from the Nacre of Pearl Oyster (Pinctada fucata) and Its Effects on Both CaCO3 Crystal Formation and Mineralogenic Cells , 2006, Marine Biotechnology.

[210]  A. Dulhunty,et al.  Calsequestrin and the calcium release channel of skeletal and cardiac muscle. , 2004, Progress in biophysics and molecular biology.

[211]  Xavier Bourrat,et al.  Multiscale structure of sheet nacre. , 2005, Biomaterials.

[212]  V. Hinman,et al.  Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina , 2003, Evolution & development.

[213]  M. Labarbera Calcification of the first larval shell of Tridacna squamosa (Tridacnidae: Bivalvia) , 1974 .

[214]  P. Favrel,et al.  Identification of new bone morphogenetic protein-related members in invertebrates. , 2001, Biochimie.

[215]  Xiao-yan Wang,et al.  Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. , 2007, Biochemistry.

[216]  R. Takagi,et al.  Identical carbonic anhydrase contributes to nacreous or prismatic layer formation in Pinctada fucata (Mollusca : Bivalvia) , 2002 .

[217]  B. Halloran,et al.  Characterization of organic matrix macromolecules from the shells of the Antarctic scallop, Adamussium colbecki. , 1995, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[218]  A. Rodríguez-Navarro,et al.  Geometrical and crystallographic constraints determine the self-organization of shell microstructures in Unionidae (Bivalvia: Mollusca) , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[219]  T. Fujikawa,et al.  Structures of mollusc shell framework proteins , 1997, Nature.

[220]  P. Hansma,et al.  Molecular Cloning and Characterization of Lustrin A, a Matrix Protein from Shell and Pearl Nacre of Haliotis rufescens * , 1997, The Journal of Biological Chemistry.

[221]  D. Bonar Molluscan Metamorphosis: A Study in Tissue Transformation , 1976 .

[222]  S. Weiner,et al.  Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. , 2002, The Journal of experimental zoology.