Maximizing Non-Monotone Submodular Functions

Submodular maximization generalizes many important problems including Max Cut in directed/undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum facility location problems. Unlike the problem of minimizing submodular functions, the problem of maximizing submodular functions is NP-hard.

[1]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[2]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[3]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[4]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[5]  Ola Svensson,et al.  Approximating Precedence-Constrained Single Machine Scheduling by Coloring , 2006, APPROX-RANDOM.

[6]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[7]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[8]  Boris Goldengorin,et al.  The maximization of submodular functions: old and new proofs for the correctness of the dichotomy algorithm , 1999 .

[9]  James R. Lee,et al.  An improved approximation ratio for the minimum linear arrangement problem , 2007, Inf. Process. Lett..

[10]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[11]  Fabián A. Chudak,et al.  A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine , 1999, Oper. Res. Lett..

[12]  G. Nemhauser,et al.  Maximizing a submodular function by integer programming: Polyhedral results for the quadratic case☆ , 1996 .

[13]  G. Nemhauser,et al.  On the Uncapacitated Location Problem , 1977 .

[14]  Uri Zwick,et al.  Combinatorial approximation algorithms for the maximum directed cut problem , 2001, SODA '01.

[15]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[16]  F. Dunstan MATROIDS AND SUBMODULAR FUNCTIONS , 1976 .

[17]  Maurice Queyranne,et al.  A combinatorial algorithm for minimizing symmetric submodular functions , 1995, SODA '95.

[18]  Nicolai N. Pisaruk,et al.  A fully combinatorial 2-approximation algorithm for precedence-constrained scheduling a single machine to minimize average weighted completion time , 2003, Discret. Appl. Math..

[19]  G. A. Tijssen,et al.  The Data-Correcting Algorithm for the Minimization of Supermodular Functions , 1999 .

[20]  Paola Alimonti Non-oblivious Local Search for MAX 2-CCSP with Application to MAX DICUT , 1997, WG.

[21]  José R. Correa,et al.  Single-Machine Scheduling with Precedence Constraints , 2005, Math. Oper. Res..

[22]  Luca Trevisan,et al.  Max cut and the smallest eigenvalue , 2008, STOC '09.

[23]  Gerhard J. Woeginger,et al.  Polynomial time approximation algorithms for machine scheduling: ten open problems , 1999 .

[24]  Satish Rao,et al.  New Approximation Techniques for Some Linear Ordering Problems , 2005, SIAM J. Comput..

[25]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[26]  Satoru Fujishige Canonical decompositions of symmetric submodular systems , 1983, Discret. Appl. Math..

[27]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[28]  Guy Kindler,et al.  Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Uriel Feige,et al.  Resolution lower bounds for the weak pigeon hole principle , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[30]  Vahab S. Mirrokni,et al.  Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions , 2008, EC '08.

[31]  Monaldo Mastrolilli,et al.  Single Machine Precedence Constrained Scheduling Is a Vertex Cover Problem , 2006, ESA.

[32]  S. Schwartz,et al.  An accelerated sequential algorithm for producing D -optimal designs , 1989 .

[33]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[34]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[35]  E. Lawler Sequencing Jobs to Minimize Total Weighted Completion Time Subject to Precedence Constraints , 1978 .

[36]  Venkatesan Guruswami,et al.  Inapproximability Results for Set Splitting and Satisfiability Problems with No Mixed Clauses , 2004, Algorithmica.

[37]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[38]  George L. Nemhauser,et al.  The uncapacitated facility location problem , 1990 .

[39]  Subhash Khot Ruling Out PTAS for Graph Min-Bisection, Densest Subgraph and Bipartite Clique , 2004, FOCS.

[40]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[41]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[42]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[43]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[44]  Vahab S. Mirrokni,et al.  Approximating submodular functions everywhere , 2009, SODA.

[45]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[46]  Uriel Feige,et al.  On maximizing welfare when utility functions are subadditive , 2006, STOC '06.

[47]  Uri Zwick,et al.  Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems , 2002, IPCO.

[48]  Yuval Rabani,et al.  ON THE HARDNESS OF APPROXIMATING MULTICUT AND SPARSEST-CUT , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[49]  Maurice Queyranne,et al.  Decompositions, Network Flows, and a Precedence Constrained Single-Machine Scheduling Problem , 2003, Oper. Res..

[50]  Venkatesan Guruswami,et al.  Hardness of Max 3SAT with no mixed clauses , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[51]  Rajeev Motwani,et al.  Precedence Constrained Scheduling to Minimize Sum of Weighted Completion Times on a Single Machine , 1999, Discret. Appl. Math..

[52]  Ryan O'Donnell,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[53]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[54]  Ola Svensson,et al.  Scheduling with Precedence Constraints of Low Fractional Dimension , 2007, IPCO.

[55]  G. Nemhauser,et al.  Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms , 1977 .

[56]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[57]  David B. Shmoys,et al.  Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms , 1997, Math. Oper. Res..

[58]  Maxim Sviridenko,et al.  An 0.828-approximation Algorithm for the Uncapacitated Facility Location Problem , 1999, Discret. Appl. Math..