Numerical simulation with high order accuracy for the time fractional reaction-subdiffusion equation

In this paper, we propose the numerical simulation method with second order temporal accuracy and fourth order spatial accuracy for the time fractional reaction–subdiffusion equation; the stability, convergence and solvability of the numerical simulation method respectively are discussed by Fourier analysis and algebraic theory; the theoretical analysis results very consistent with the numerical experiment.

[1]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Santos B. Yuste,et al.  Subdiffusion-limited A+A reactions. , 2001 .

[3]  Jason M Haugh,et al.  Analysis of reaction-diffusion systems with anomalous subdiffusion. , 2009, Biophysical journal.

[4]  Bo Yu,et al.  A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation , 2014, Numerical Algorithms.

[5]  S. Wearne,et al.  Anomalous subdiffusion with multispecies linear reaction dynamics. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  H. Huang,et al.  Numerical method for two dimensional fractional reaction subdiffusion equation , 2013 .

[7]  Kazuhiko Seki,et al.  Fractional reaction-diffusion equation , 2003 .

[8]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[9]  V. V. Gafiychuk,et al.  Inhomogeneous oscillatory solutions in fractional reaction-diffusion systems and their computer modeling , 2008, Appl. Math. Comput..

[10]  Subir Das,et al.  An approximate solution of nonlinear fractional reaction–diffusion equation , 2011 .

[11]  I M Sokolov,et al.  Front propagation in a one-dimensional autocatalytic reaction-subdiffusion system. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Mehdi Dehghan,et al.  A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method , 2015, Comput. Math. Appl..

[13]  Saad Zagloul Rida,et al.  On the solutions of time-fractional reaction–diffusion equations , 2010 .

[14]  Katja Lindenberg,et al.  Reaction-subdiffusion model of morphogen gradient formation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Katja Lindenberg,et al.  Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Mehdi Dehghan,et al.  Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method , 2015, J. Comput. Appl. Math..

[17]  Denis Blackmore,et al.  Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations , 2009 .

[18]  O. P. Singh,et al.  An analytic algorithm for time fractional nonlinear reaction–diffusion equation based on a new iterative method , 2012 .

[19]  I M Sokolov,et al.  Reaction-subdiffusion equations for the A<=>B reaction. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Mihály Kovács,et al.  Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..

[21]  Mario S. Mommer,et al.  Modeling Subdiffusion Using Reaction Diffusion Systems , 2009, SIAM J. Appl. Math..

[22]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[23]  A. Zoia,et al.  Continuous-time random-walk approach to normal and anomalous reaction-diffusion processes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Mohamed Adel,et al.  Weighted Average Finite Difference Methods for Fractional Reaction-Subdiffusion Equation , 2013 .

[25]  I M Sokolov,et al.  Reaction-subdiffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  A. M. Mathai,et al.  Fractional Reaction-Diffusion Equations , 2006, math/0604473.

[27]  J W Chiu,et al.  Monte Carlo simulation and linear stability analysis of Turing pattern formation in reaction-subdiffusion systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .

[29]  V. Gafiychuk,et al.  Mathematical modeling of time fractional reaction-diffusion systems , 2008 .

[30]  Fawang Liu,et al.  Stability and convergence of an implicit numerical method for the non-linear fractional reaction–subdiffusion process , 2009 .

[31]  Changpin Li,et al.  Mixed spline function method for reaction-subdiffusion equations , 2013, J. Comput. Phys..

[32]  Arak M. Mathai,et al.  Further solutions of fractional reaction-diffusion equations in terms of the H-function , 2007, J. Comput. Appl. Math..

[33]  V. V. Gafiychuk,et al.  Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems , 2010, Comput. Math. Appl..

[34]  A. M. Mathai,et al.  Solution of Generalized Fractional Reaction-Diffusion Equations , 2006 .

[35]  Ji-Huan He,et al.  Variational Iteration Method for a Nonlinear Reaction-Diffusion Process , 2008 .

[36]  Werner Horsthemke,et al.  Kinetic equations for reaction-subdiffusion systems: derivation and stability analysis. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[38]  Ali H. Bhrawy,et al.  An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Subdiffusion and Reaction Subdiffusion Equations , 2015 .

[39]  Chunye Gong,et al.  A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method , 2013 .

[40]  V. Gafiychuk,et al.  Stability analysis and oscillatory structures in time-fractional reaction-diffusion systems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Fawang Liu,et al.  Numerical approximation for a variable-order nonlinear reaction–subdiffusion equation , 2013, Numerical Algorithms.

[42]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..