Quantitative phase microscopy through differential interference imaging.

An extension of Nomarski differential interference contrast microscopy enables isotropic linear phase imaging through the combination of phase shifting, two directions of shear, and Fourier space integration using a modified spiral phase transform. We apply this method to simulated and experimentally acquired images of partially absorptive test objects. A direct comparison of the computationally determined phase to the true object phase demonstrates the capabilities of the method. Simulation results predict and confirm results obtained from experimentally acquired images.

[1]  Carol J Cogswell,et al.  Quantitative structured-illumination phase microscopy. , 2008, Applied optics.

[2]  A Finizio,et al.  Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography. , 2007, Optics express.

[3]  Joseph A Izatt,et al.  Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy. , 2007, Optics express.

[4]  Gabriel Popescu,et al.  Quantitative phase imaging of live cells using fast Fourier phase microscopy. , 2007, Applied optics.

[5]  Robert R McLeod,et al.  Three-dimensional direct-write lithography into photopolymer. , 2007, Applied optics.

[6]  R. McLeod,et al.  Scanning transmission microscopy using a position-sensitive detector. , 2006, Applied optics.

[7]  Alexander Jesacher,et al.  Quantitative imaging of complex samples by spiral phase contrast microscopy. , 2006, Optics express.

[8]  Toyohiko Yatagai,et al.  A new method of three-dimensional measurement by differential interference contrast microscope , 2006 .

[9]  Sharon V. King,et al.  Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images , 2006, SPIE BiOS.

[10]  Gregory W Baxter,et al.  Phase-sensitive imaging techniques applied to optical fibre characterisation , 2006 .

[11]  Changhuei Yang,et al.  Harmonic phase-dispersion microscope with a Mach-Zehnder interferometer. , 2005, Applied optics.

[12]  Sharon V. King,et al.  A phase-shifting DIC technique for measuring 3D phase objects: experimental verification , 2004, SPIE BiOS.

[13]  N. Ben-yosef,et al.  Topographic profiling and refractive-index analysis by use of differential interference contrast with bright-field intensity and atomic force imaging. , 2004, Applied optics.

[14]  Yingjun Zheng,et al.  Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope. , 2004, Applied optics.

[15]  Jun Q. Lu,et al.  Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm. , 2003, Physics in medicine and biology.

[16]  M. R. A R N I S O N,et al.  Linear phase imaging using differential interference contrast microscopy , 2003 .

[17]  K. Nugent,et al.  Quantitative phase‐amplitude microscopy I: optical microscopy , 2002, Journal of microscopy.

[18]  M. A. Oldfield,et al.  Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  Takeo Kanade,et al.  Reconstructing specimens using DIC microscope images , 2000, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering.

[20]  M R Arnison,et al.  Using the Hilbert transform for 3D visualization of differential interference contrast microscope images , 2000, Journal of microscopy.

[21]  C. Preza,et al.  Rotational-diversity phase estimation from differential-interference-contrast microscopy images. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[23]  D L Snyder,et al.  Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  E. Cuche,et al.  Digital holography for quantitative phase-contrast imaging. , 1999, Optics letters.

[25]  Donald L. Snyder,et al.  Determination of direction-independent optical path length distribution of cells using rotational-diversity transmitted-light differential-interference-contrast (DIC) images , 1998, Photonics West - Biomedical Optics.

[26]  Zvi Kam,et al.  Microscopic differential interference contrast image processing by line integration (LID) and deconvolution , 1998 .

[27]  L. V. van Vliet,et al.  Reconstruction of optical pathlength distributions from images obtained by a wide‐field differential interference contrast microscope , 1997, Journal of microscopy.

[28]  Donald L. Snyder,et al.  Phase estimation from transmitted-light DIC images using rotational diversity , 1997, Optics & Photonics.

[29]  Carol J. Cogswell,et al.  Quantitative DIC microscopy using a geometric phase shifter , 1997, Photonics West - Biomedical Optics.

[30]  Maitreyee Roy,et al.  Achromatic phase-shifting for two-wavelength phase-stepping interferometry , 1996 .

[31]  Patricia A. Feineigle,et al.  Processing of 3D DIC microscopy images for data visualization , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[32]  P. Hariharan The Sénarmont Compensator: An Early Application of the Geometric Phase , 1993 .

[33]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[34]  Carol J. Cogswell,et al.  Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging , 1992 .

[35]  Toyohiko Yatagai,et al.  Optical surface microtopography using phase-shifting Nomarski microscope , 1991, Optics & Photonics.

[36]  T J Holmes,et al.  Signal-processing characteristics of differentialinterference-contrast microscopy. , 1987, Applied optics.

[37]  R. Gordon,et al.  Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments. , 1980, Applied optics.

[38]  I. Rubin,et al.  Random point processes , 1977, Proceedings of the IEEE.

[39]  A. Fowler Our Astronomical Column , 1890, Nature.