Generation and Visual Exploration of Medical Flow Data: Survey, Research Trends and Future Challenges

Simulations and measurements of blood and airflow inside the human circulatory and respiratory system play an increasingly important role in personalized medicine for prevention, diagnosis and treatment of diseases. This survey focuses on three main application areas. (1) Computational fluid dynamics (CFD) simulations of blood flow in cerebral aneurysms assist in predicting the outcome of this pathologic process and of therapeutic interventions. (2) CFD simulations of nasal airflow allow for investigating the effects of obstructions and deformities and provide therapy decision support. (3) 4D phase‐contrast (4D PC) magnetic resonance imaging of aortic haemodynamics supports the diagnosis of various vascular and valve pathologies as well as their treatment. An investigation of the complex and often dynamic simulation and measurement data requires the coupling of sophisticated visualization, interaction and data analysis techniques. In this paper, we survey the large body of work that has been conducted within this realm. We extend previous surveys by incorporating nasal airflow, addressing the joint investigation of blood flow and vessel wall properties and providing a more fine‐granular taxonomy of the existing techniques. From the survey, we extract major research trends and identify open problems and future challenges. The survey is intended for researchers interested in medical flow but also more general, in the combined visualization of physiology and anatomy, the extraction of features from flow field data and feature‐based visualization, the visual comparison of different simulation results and the interactive visual analysis of the flow field and derived characteristics.

[1]  Kai Lawonn,et al.  Coherent View-Dependent Streamlines for Understanding Blood Flow , 2014, EuroVis.

[2]  Bernhard Preim,et al.  2D Plot Visualization of Aortic Vortex Flow in Cardiac 4D PC-MRI Data , 2015, Bildverarbeitung für die Medizin.

[3]  Gerhard Rettinger,et al.  Nasal Air Temperature and Airflow during Respiration in Numerical Simulation Based on Multislice Computed Tomography Scan , 2006, American journal of rhinology.

[4]  Kai Lawonn,et al.  Management of Cerebral Aneurysm Descriptors based on an Automatic Ostium Extraction , 2018, IEEE Computer Graphics and Applications.

[5]  Helwig Hauser,et al.  Straightening Tubular Flow for Side-by-Side Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Daniel Ruiz Fernández,et al.  Automatic Abdominal Aortic Aneurysm segmentation in MR images , 2016, Expert Syst. Appl..

[7]  H. Hege,et al.  A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications , 1997 .

[8]  Manuel Menezes de Oliveira Neto,et al.  Overview and State-of-the-Art of Uncertainty Visualization , 2014, Scientific Visualization.

[9]  Kai Lawonn,et al.  Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms , 2014, IEEE Transactions on Visualization and Computer Graphics.

[10]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[11]  Bernhard Preim,et al.  3D Visualization of Vasculature: An Overview , 2008, Visualization in Medicine and Life Sciences.

[12]  Fernando Mut,et al.  COMPARISON OF CEREBRAL ANEURYSM FLOW FIELDS OBTAINED FROM CFD AND DSA , 2016 .

[13]  Stefan Zachow,et al.  Adaptive Remeshing of Non-Manifold Surfaces , 2008, Eurographics.

[14]  Bernhard Preim,et al.  Visual Exploration of Simulated and Measured Blood Flow , 2012, Scientific Visualization.

[15]  Anna Vilanova,et al.  Understanding Blood-Flow Dynamics: New Challenges for Visualization , 2013, Computer.

[16]  Ola Friman,et al.  Blood Flow Computation in Phase-Contrast MRI by Minimal Paths in Anisotropic Media , 2011, MICCAI.

[17]  Christopher Nimsky,et al.  Automatic adjustment of bidimensional transfer functions for direct volume visualization of intracranial aneurysms , 2004, Medical Imaging: Image-Guided Procedures.

[18]  Michael Markl,et al.  Bicuspid Aortic Cusp Fusion Morphology Alters Aortic Three-Dimensional Outflow Patterns, Wall Shear Stress, and Expression of Aortopathy , 2014, Circulation.

[19]  Vladimir Vezhnevets,et al.  “GrowCut”-Interactive Multi-Label N-D Image Segmentation By Cellular Automata , 2005 .

[20]  Charles A. Taylor,et al.  Efficient anisotropic adaptive discretization of the cardiovascular system , 2006 .

[21]  Kai Lawonn,et al.  Comparative Blood Flow Visualization for Cerebral Aneurysm Treatment Assessment , 2014, Comput. Graph. Forum.

[22]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[23]  Bernhard Preim,et al.  Automatic Generation of Context Visualizations for Cerebral Aneurysms from MRA Datasets , 2009 .

[24]  A. Cruickshank,et al.  Subarachnoid haemorrhage , 2007, The Lancet.

[25]  Petter Dyverfeldt,et al.  Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations , 2012, Journal of magnetic resonance imaging : JMRI.

[26]  Bernhard Preim,et al.  Implicit vessel surface reconstruction for visualization and CFD simulation , 2008, International Journal of Computer Assisted Radiology and Surgery.

[27]  G. Mlynski,et al.  Physiology and Pathophysiology of Nasal Breathing , 2013 .

[28]  Link,et al.  Diagnostic Accuracy of CT Angiography with Matched Mask Bone Elimination for Detection of Intracranial Aneurysms: Comparison with Digital Subtraction Angiography and 3D Rotational Angiography , 2008, American Journal of Neuroradiology.

[29]  Rainald Löhner,et al.  Simulation of intracranial aneurysm stenting: Techniques and challenges , 2009 .

[30]  C. Kouskouras,et al.  Intracranial aneurysms: evaluation using CTA and MRA. Correlation with DSA and intraoperative findings , 2004, Neuroradiology.

[31]  Endovascular surgical neuroradiology. , 2001, Clinical privilege white paper.

[32]  H. Howie Huang,et al.  Computational modeling of cardiac hemodynamics: Current status and future outlook , 2016, J. Comput. Phys..

[33]  Alejandro F Frangi,et al.  Intra-Aneurysmal Pressure and Flow Changes Induced by Flow Diverters: Relation to Aneurysm Size and Shape , 2013, American Journal of Neuroradiology.

[34]  Li Yu,et al.  Effectiveness of Feature-Driven Storytelling in 3D Time-Varying Data Visualization , 2016, Visualization and Data Analysis.

[35]  Bernhard Preim,et al.  Interactive Patient-Specific Vascular Modeling with Sweep Surfaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[36]  Kevin M. Johnson,et al.  Phase unwrapping in 4D MR flow with a 4D single‐step laplacian algorithm , 2016, Journal of magnetic resonance imaging : JMRI.

[37]  Bernhard Preim,et al.  Reconstruction of 3D Surface Meshes for Bood Flow Simulations of Intracranial Aneurysms , 2015, CURAC.

[38]  Paul Vespa,et al.  Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association , 2012, Stroke.

[39]  Michael Markl,et al.  Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC‐MRI data , 2014, Magnetic resonance in medicine.

[40]  John Watterson,et al.  An overview of numerical modelling of nasal airflow. , 2006, Rhinology.

[41]  Eduardo Soudah,et al.  CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry with CT , 2013, Comput. Math. Methods Medicine.

[42]  Raghu Machiraju,et al.  Visualizing Particle/Flow Structure Interactions in the Small Bronchial Tubes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[43]  Guillaume Caumon,et al.  Indirect unstructured hex-dominant mesh generation using tetrahedra recombination , 2014, Computational Geosciences.

[44]  K. Katada,et al.  Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms , 2004, Stroke.

[45]  Julia S. Kimbell,et al.  COMPUTATIONAL FLUID DYNAMICS SIMULATIONS OF INSPIRATORY AIRFLOW IN THE HUMAN NOSE AND NASOPHARYNX , 1998 .

[46]  John Watterson,et al.  A Model of Airflow in the Nasal Cavities: Implications for Nasal Air Conditioning and Epistaxis , 2009, American journal of rhinology & allergy.

[47]  Rüdiger Westermann,et al.  Line density control in screen-space via balanced line hierarchies , 2016, Comput. Graph..

[48]  Tino Ebbers,et al.  Patient-Specific Simulation of Cardiac Blood Flow From High-Resolution Computed Tomography. , 2016, Journal of biomechanical engineering.

[49]  Bernd Tomandl,et al.  Fast Analysis of Intracranial Aneurysms Based on Interactive Direct Volume Rendering and CTA , 1998, MICCAI.

[50]  Bernhard Preim,et al.  Semi-Immersive 3D Sketching of Vascular Structures for Medical Education , 2016, VCBM/MedViz.

[51]  Kai Lawonn,et al.  Semi‐automatic Vortex Flow Classification in 4D PC‐MRI Data of the Aorta , 2016, Comput. Graph. Forum.

[52]  Bart M. ter Haar Romeny,et al.  Visualization of 4D Blood‐Flow Fields by Spatiotemporal Hierarchical Clustering , 2012, Comput. Graph. Forum.

[53]  Aki Laakso,et al.  Saccular intracranial aneurysm: pathology and mechanisms , 2012, Acta Neuropathologica.

[54]  T. Ebbers,et al.  Particle trace visualization of intracardiac flow using time‐resolved 3D phase contrast MRI , 1999, Magnetic resonance in medicine.

[55]  A. Algra,et al.  Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis , 2011, The Lancet Neurology.

[56]  A. Rassineux,et al.  GENERATION AND OPTIMIZATION OF TETRAHEDRAL MESHES BY ADVANCING FRONT TECHNIQUE , 1998 .

[57]  Jules Bloomenthal,et al.  Polygonization of non-manifold implicit surfaces , 1995, SIGGRAPH.

[58]  D. Zimonjic,et al.  DLC1 suppresses NF-κB activity in prostate cancer cells due to its stabilizing effect on adherens junctions , 2014, SpringerPlus.

[59]  Christian Rössl,et al.  Realistic virtual intracranial stenting and computational fluid dynamics for treatment analysis. , 2013, Journal of biomechanics.

[60]  Bernhard Preim,et al.  Motion-aware stroke volume quantification in 4D PC-MRI data of the human aorta , 2016, International Journal of Computer Assisted Radiology and Surgery.

[61]  Christian Schumann,et al.  Three-dimensional Visualization of Relative Pressure in Vascular Structures , 2015, CURAC.

[62]  Wenzel Jakob,et al.  Robust hex-dominant mesh generation using field-guided polyhedral agglomeration , 2017, ACM Trans. Graph..

[63]  Ben Shneiderman,et al.  Interactive Dynamics for Visual Analysis , 2012 .

[64]  Alejandro F. Frangi,et al.  Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity , 2005, IEEE Transactions on Medical Imaging.

[65]  José M López-Higuera,et al.  Identification of vessel wall degradation in ascending thoracic aortic aneurysms with OCT. , 2014, Biomedical optics express.

[66]  A J Aschoff,et al.  Numerical simulation of air temperature and airflow patterns in the human nose during expiration. , 2004, Clinical otolaryngology and allied sciences.

[67]  Shahrouz Aliabadi,et al.  Large-scale CFD simulations of airflow and particle deposition in lung airway , 2013 .

[68]  Bernhard Preim,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms , 2022 .

[69]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[70]  M. Alley,et al.  Comparison of flow patterns in ascending aortic aneurysms and volunteers using four‐dimensional magnetic resonance velocity mapping , 2007, Journal of magnetic resonance imaging : JMRI.

[71]  Alberto M. Gambaruto,et al.  Flow structures in cerebral aneurysms , 2012 .

[72]  Tong Wang,et al.  Numerical simulation of normal nasal cavity airflow in Chinese adult: a computational flow dynamics model , 2012, European Archives of Oto-Rhino-Laryngology.

[73]  Gerik Scheuermann,et al.  LineAO - Improved Three-Dimensional Line Rendering , 2013, IEEE Trans. Vis. Comput. Graph..

[74]  M. Alley,et al.  Bicuspid Aortic Valve : Four-dimensional MR Evaluation of Ascending Aortic Systolic Flow Patterns 1 , 2010 .

[75]  Seung-Kyu Chung,et al.  Digital particle image velocimetry studies of nasal airflow , 2008, Respiratory Physiology & Neurobiology.

[76]  D N Firmin,et al.  Blood flow patterns in the human aorta studied by magnetic resonance. , 1987, British heart journal.

[77]  Anna Vilanova,et al.  4D MRI Flow Coupled to Physics‐Based Fluid Simulation for Blood‐Flow Visualization , 2014, Comput. Graph. Forum.

[78]  J. Mocco,et al.  MORPHOLOGY PARAMETERS FOR INTRACRANIAL ANEURYSM RUPTURE RISK ASSESSMENT , 2008, Neurosurgery.

[79]  David A. Steinman,et al.  An image-based modeling framework for patient-specific computational hemodynamics , 2008, Medical & Biological Engineering & Computing.

[80]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[81]  Joris Bols,et al.  Unstructured hexahedral mesh generation of complex vascular trees using a multi-block grid-based approach , 2016, Computer methods in biomechanics and biomedical engineering.

[82]  Joerg Meyer,et al.  Pathline predicates and unsteady flow structures , 2008, The Visual Computer.

[83]  Joachim Schöberl,et al.  NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[84]  B. R. Noack,et al.  Acceleration feature points of unsteady shear flows , 2014, 1401.2462.

[85]  Rob J. van der Geest,et al.  A Framework for Fast Initial Exploration of PC-MRI Cardiac Flow , 2016, VCBM/MedViz.

[86]  Petter Dyverfeldt,et al.  4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease , 2016, Journal of magnetic resonance imaging : JMRI.

[87]  Derek Abbott,et al.  Cardiac Flow Analysis Applied to Phase Contrast Magnetic Resonance Imaging of the Heart , 2009, Annals of Biomedical Engineering.

[88]  Heinz-Otto Peitgen,et al.  Probabilistic 4D Blood Flow Mapping , 2010, MICCAI.

[89]  Guilherme J M Garcia,et al.  Atrophic rhinitis: a CFD study of air conditioning in the nasal cavity. , 2007, Journal of applied physiology.

[90]  Christopher Nimsky,et al.  Enhanced 3D-Visualization of Intracranial Aneurysms Involving the Skull Base , 2003, MICCAI.

[91]  Christof Karmonik,et al.  A technique for improved quantitative characterization of intracranial aneurysms. , 2004, AJNR. American journal of neuroradiology.

[92]  Leopoldo Altamirano Robles,et al.  Fast Noncontinuous Path Phase-Unwrapping Algorithm Based on Gradients and Mask , 2004, CIARP.

[93]  Jeff D. Eldredge,et al.  Toward numerical simulations of fluid–structure interactions for investigation of obstructive sleep apnea , 2016 .

[94]  T. Kiehl,et al.  Intracranial aneurysms: from vessel wall pathology to therapeutic approach , 2011, Nature Reviews Neurology.

[95]  Kai Lawonn,et al.  Combined Visualization of Vessel Deformation and Hemodynamics in Cerebral Aneurysms , 2017, IEEE Transactions on Visualization and Computer Graphics.

[96]  Bernhard Preim,et al.  Geometric Reconstruction of the Ostium of Cerebral Aneurysms , 2010, VMV.

[97]  Heinz-Otto Peitgen,et al.  Fast interactive exploration of 4D MRI flow data , 2011, Medical Imaging.

[98]  Bernhard Preim,et al.  Guided Analysis of Cardiac 4D PC-MRI Blood Flow Data , 2015, Eurographics.

[99]  R C Schroter,et al.  Experimental investigation of nasal airflow , 2008, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[100]  Stefan Zachow,et al.  Evaluation of the Intranasal Flow Field through Computational Fluid Dynamics , 2013, Facial Plastic Surgery.

[101]  Michael Unser,et al.  Spatio-temporal regularization of flow-fields , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[102]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[103]  M D Bui New concepts in nasal evaluation. , 1997, Advances in oto-rhino-laryngology.

[104]  Anja Hennemuth,et al.  Interactive virtual stent planning for the treatment of coarctation of the aorta , 2015, International Journal of Computer Assisted Radiology and Surgery.

[105]  Gregory M. Nielson,et al.  Computing the separating surface for segmented data , 1997 .

[106]  Kai Lawonn,et al.  Streamlines for Illustrative Real‐Time Rendering , 2013, Comput. Graph. Forum.

[107]  Alejandro F. Frangi,et al.  Automatic Aneurysm Neck Detection Using Surface Voronoi Diagrams , 2011, IEEE Transactions on Medical Imaging.

[108]  J. Xiang,et al.  High WSS or Low WSS? Complex Interactions of Hemodynamics with Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis , 2014, American Journal of Neuroradiology.

[109]  Huy Nguyen,et al.  Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements , 2012, International Journal of Computer Assisted Radiology and Surgery.

[110]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[111]  Christian Rössl,et al.  Opacity optimization for 3D line fields , 2013, ACM Trans. Graph..

[112]  L Augsburger,et al.  Methodologies to assess blood flow in cerebral aneurysms: current state of research and perspectives. , 2009, Journal of neuroradiology. Journal de neuroradiologie.

[113]  Bernhard Preim,et al.  Map Displays for the Analysis of Scalar Data on Cerebral Aneurysm Surfaces , 2009, Comput. Graph. Forum.

[114]  Bernhard Preim,et al.  Recommendations for accurate numerical blood flow simulations of stented intracranial aneurysms , 2013, Biomedizinische Technik. Biomedical engineering.

[115]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[116]  Andrea Tagliasacchi,et al.  Skeletal Representations and Applications , 2013, ArXiv.

[117]  Kai Lawonn,et al.  Adaptive Surface Visualization of Vessels with Animated Blood Flow , 2014, Comput. Graph. Forum.

[118]  F Mut,et al.  Quantifying the Large-Scale Hemodynamics of Intracranial Aneurysms , 2014, American Journal of Neuroradiology.

[119]  Alejandro F. Frangi,et al.  Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping , 2011 .

[120]  Ziji Wu,et al.  Multiple material marching cubes algorithm , 2003 .

[121]  Holger Theisel,et al.  The State of the Art in Topology‐Based Visualization of Unsteady Flow , 2011, Comput. Graph. Forum.

[122]  M. Markl,et al.  4D flow cardiovascular magnetic resonance consensus statement , 2015, Journal of Cardiovascular Magnetic Resonance.

[123]  Kezhou Wang,et al.  Numerical Simulation of Air Flow in the Human Nasal Cavity , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[124]  T. Mccaffrey,et al.  Normal Nasal Resistance , 1985, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[125]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[126]  Rüdiger Westermann,et al.  Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles , 2016, IEEE Transactions on Visualization and Computer Graphics.

[127]  T. Ebbers,et al.  In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation , 2011, Annals of Biomedical Engineering.

[128]  Hervé Delingette,et al.  Adaptive Tetrahedral Meshing for Personalized Cardiac Simulations , 2009 .

[129]  Kai Zhao,et al.  What is normal nasal airflow? A computational study of 22 healthy adults , 2014, International forum of allergy & rhinology.

[130]  M. Ferrua,et al.  Modeling the Fluid Dynamics in a Human Stomach to Gain Insight of Food Digestion , 2010, Journal of food science.

[131]  Silvia Born,et al.  Visual Analysis of Cardiac 4D MRI Blood Flow Using Line Predicates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[132]  Gregory M. Nielson,et al.  Computing the separating surface for segmented data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[133]  Andreas Lintermann,et al.  Fluid mechanics based classification of the respiratory efficiency of several nasal cavities , 2013, Comput. Biol. Medicine.

[134]  Gerik Scheuermann,et al.  The State of the Art in Flow Visualization: Partition-Based Techniques , 2008, SimVis.

[135]  Bernhard Preim,et al.  Extraction of Patient-Specific 3D Cerebral Artery and Wall Thickness Models from 2D OCT and Structured-Light 3D Scanner Data , 2016, CURAC.

[136]  C. Putman,et al.  Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms , 2010, American Journal of Neuroradiology.

[137]  Bostjan Likar,et al.  Computer-Aided Detection and Quantification of Intracranial Aneurysms , 2015, MICCAI.

[138]  Silvia Born,et al.  Illustrative visualization of cardiac and aortic blood flow from 4D MRI data , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[139]  Hans-Christian Hege,et al.  Visual Exploration of Nasal Airflow , 2009, IEEE Transactions on Visualization and Computer Graphics.

[140]  Bernhard Preim,et al.  A Survey of Cardiac 4D PC-MRI Data Processing , 2015, VCBM.

[141]  Hans-Christian Hege,et al.  Probabilistic Local Features in Uncertain Vector Fields with Spatial Correlation , 2012, Comput. Graph. Forum.

[142]  Michael Unser,et al.  Variational enhancement and denoising of flow field images , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[143]  Sebastian Schmitter,et al.  4D Flow MRI , 2018 .

[144]  Rocco Gasteiger Visual Exploration of Cardiovascular Hemodynamics , 2014 .

[145]  Holger Theisel,et al.  Uncertain topology of 3D vector fields , 2011, 2011 IEEE Pacific Visualization Symposium.

[146]  Yoko Kato,et al.  Detection of Pulsation in Ruptured and Unruptured Cerebral Aneurysms by Electrocardiographically Gated 3-Dimensional Computed Tomographic Angiography With a 320-Row Area Detector Computed Tomography and Evaluation of Its Clinical Usefulness , 2011, Neurosurgery.

[147]  David A. Steinman,et al.  Automatic Neck Plane Detection and 3D Geometric Characterization of Aneurysmal Sacs , 2012, Annals of Biomedical Engineering.

[148]  Bernhard Preim,et al.  Robust Cardiac Function Assessment in 4D PC‐MRI Data of the Aorta and Pulmonary Artery , 2016, Comput. Graph. Forum.

[149]  Michael Markl,et al.  Aortic Hemodynamics in Patients With and Without Repair of Aortic Coarctation: In Vivo Analysis by 4D Flow-Sensitive Magnetic Resonance Imaging , 2011, Investigative radiology.

[150]  R. C. Schroter,et al.  Dynamics of airflow in a short inhalation , 2015, Journal of The Royal Society Interface.

[151]  Fernando Mut,et al.  Regional Mapping of Flow and Wall Characteristics of Intracranial Aneurysms , 2016, Annals of Biomedical Engineering.

[152]  Gerik Scheuermann,et al.  Streamline Predicates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[153]  Oscar Camara,et al.  Cerebral Aneurysms: A Patient-Specific and Image-Based Management Pipeline , 2011 .

[154]  Marcel Breeuwer,et al.  Exploration of 4D MRI Blood Flow using Stylistic Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[155]  B. Preim,et al.  Two-Dimensional Plot Visualization of Aortic Vortex Flow in Cardiac 4 D PC-MRI Data , 2014 .

[156]  Clement Kleinstreuer,et al.  Biofluid Dynamics: Principles and Selected Applications , 2006 .

[157]  Ivo Weinhold,et al.  Numerical simulation of airflow in the human nose , 2004, European Archives of Oto-Rhino-Laryngology and Head & Neck.

[158]  Andrea Fuster,et al.  Characterization of Blood-Flow Patterns from Phase-Contrast MRI Velocity Fields , 2014, EuroVis.

[159]  Robert A. Mericle,et al.  “Real-world” comparison of non-invasive imaging to conventional catheter angiography in the diagnosis of cerebral aneurysms , 2011, Surgical neurology international.

[160]  J J Pessey,et al.  [Diagnostic perspectives in rhinology]. , 1993, Annales d'oto-laryngologie et de chirurgie cervico faciale : bulletin de la Societe d'oto-laryngologie des hopitaux de Paris.

[161]  Adam Finkelstein,et al.  Suggestive contours for conveying shape , 2003, ACM Trans. Graph..

[162]  Kenneth I. Joy,et al.  Analysis of Time-Dependent Flow-Sensitive PC-MRI Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[163]  Marcel Breeuwer,et al.  Interactive Virtual Probing of 4D MRI Blood-Flow , 2011, IEEE Transactions on Visualization and Computer Graphics.

[164]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[165]  Y Hoi,et al.  An objective approach to digital removal of saccular aneurysms: technique and applications. , 2009, The British journal of radiology.

[166]  Alvaro Valencia,et al.  Blood flow dynamics and fluid–structure interaction in patient‐specific bifurcating cerebral aneurysms , 2008 .

[167]  Bernhard Preim,et al.  Virtual Inflation of the Cerebral Artery Wall for the Integrated Exploration of OCT and Histology Data , 2017, Comput. Graph. Forum.

[168]  Kai Lawonn,et al.  Automatic generation of anatomic characteristics from cerebral aneurysm surface models , 2012, International Journal of Computer Assisted Radiology and Surgery.

[169]  Hans-Christian Hege,et al.  Nonparametric Models for Uncertainty Visualization , 2013, Comput. Graph. Forum.

[170]  David Saloner,et al.  Imaging biomarkers of aortic disease: increased growth rates with eccentric systolic flow. , 2012, Journal of the American College of Cardiology.

[171]  Aart J. Nederveen,et al.  Multiscale 3-D + t Intracranial Aneurysmal Flow Vortex Detection , 2015, IEEE Transactions on Biomedical Engineering.

[172]  Hans-Christian Hege,et al.  Eurographics -ieee Vgtc Symposium on Visualization (2005) Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines , 2022 .

[173]  D. Louis Collins,et al.  An Evaluation of Depth Enhancing Perceptual Cues for Vascular Volume Visualization in Neurosurgery , 2014, IEEE Transactions on Visualization and Computer Graphics.

[174]  Wolfgang Schröder,et al.  Investigation of the impact of the geometry on the nose flow , 2006 .

[175]  S Saalfeld,et al.  Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations , 2017, Journal of NeuroInterventional Surgery.

[176]  J Max Findlay,et al.  The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. , 2003, Journal of neurosurgery.

[177]  Kai Lawonn,et al.  AmniVis – A System for Qualitative Exploration of Near‐Wall Hemodynamics in Cerebral Aneurysms , 2013, Comput. Graph. Forum.

[178]  Kai Lawonn,et al.  Exploration of blood flow patterns in cerebral aneurysms during the cardiac cycle , 2018, Comput. Graph..

[179]  Ken Brodlie,et al.  A Review of Uncertainty in Data Visualization , 2012, Expanding the Frontiers of Visual Analytics and Visualization.

[180]  Rainald Löhner,et al.  From Medical Images to CFD Meshes , 1999, IMR.

[181]  Bernhard Preim,et al.  A Clustering-based Visualization Technique to Emphasize Meaningful Regions of Vector Fields , 2011, VMV.

[182]  O. Zikanov Essential Computational Fluid Dynamics , 2010 .

[183]  David A Steinman,et al.  The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms. , 2015, Journal of biomechanical engineering.

[184]  Kai Lawonn,et al.  Glyph‐Based Comparative Stress Tensor Visualization in Cerebral Aneurysms , 2017, Comput. Graph. Forum.

[185]  Alastair J. Martin,et al.  Phase‐contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: Comparison with computational fluid dynamics , 2009, Magnetic resonance in medicine.

[186]  Hans-Christian Hege,et al.  3D Reconstruction of Individual Anatomy from Medical Image Data: Segmentation and Geometry Processing , 2007 .

[187]  A. Algra,et al.  Endovascular coiling versus neurosurgical clipping for patients with aneurysmal subarachnoid haemorrhage. , 2006, The Cochrane database of systematic reviews.

[188]  Maxim Zaitsev,et al.  Time-resolved, 3-Dimensional Magnetic Resonance Flow Analysis at 3 T: Visualization of Normal and Pathological Aortic Vascular Hemodynamics , 2007, Journal of computer assisted tomography.

[189]  Isabelle Bloch,et al.  A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes , 2009, Medical Image Anal..

[190]  Maurizio Quadrio,et al.  Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations , 2014, European Archives of Oto-Rhino-Laryngology.

[191]  C. Putman,et al.  Hemodynamics of Cerebral Aneurysms. , 2009, Annual review of fluid mechanics.

[192]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[193]  J. Schaller,et al.  MRI‐based computational fluid dynamics for diagnosis and treatment prediction: Clinical validation study in patients with coarctation of aorta , 2015, Journal of magnetic resonance imaging : JMRI.

[194]  Johanna Beyer,et al.  The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality? , 2018, IEEE Transactions on Visualization and Computer Graphics.

[195]  Stefan Zachow,et al.  Statistical Shape Modeling of Musculoskeletal Structures and Its Applications , 2016 .

[196]  A. Malek,et al.  Cerebral aneurysm wall thickness analysis using intraoperative microscopy: effect of size and gender on thin translucent regions , 2012, Journal of NeuroInterventional Surgery.

[197]  L. Antiga,et al.  Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography , 2003, IEEE Transactions on Medical Imaging.

[198]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[199]  M. Markl,et al.  Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance , 2011, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[200]  Bernhard Preim,et al.  Evaluation of Time-Dependent Wall Shear Stress Visualizations for Cerebral Aneurysms , 2016, Bildverarbeitung für die Medizin.

[201]  Kai Lawonn,et al.  Clustering of Aortic Vortex Flow in Cardiac 4D PC-MRI Data , 2016, Bildverarbeitung für die Medizin.

[202]  M. L. Raghavan,et al.  Quantified aneurysm shape and rupture risk. , 2005, Journal of neurosurgery.

[203]  Alejandro F. Frangi,et al.  A Virtual Coiling Technique for Image-Based Aneurysm Models by Dynamic Path Planning , 2013, IEEE Transactions on Medical Imaging.

[204]  Milan Sonka,et al.  Evaluation of the human airway with multi-detector x-ray-computed tomography and optical imaging. , 2004, Physiological measurement.

[205]  Elmar Eisemann,et al.  Temporal Interpolation of 4D PC-MRI Blood-flow Measurements Using Bidirectional Physics-based Fluid Simulation , 2016, VCBM/MedViz.

[206]  M H Buonocore,et al.  Visualizing blood flow patterns using streamlines, arrows, and particle paths , 1998, Magnetic resonance in medicine.

[207]  Bernhard Preim,et al.  Automatic Detection and Visualization of Qualitative Hemodynamic Characteristics in Cerebral Aneurysms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[208]  Einar Heiberg,et al.  Design and validation of Segment - freely available software for cardiovascular image analysis , 2010, BMC Medical Imaging.

[209]  F Viñuela,et al.  Wall Shear Stress Distribution Inside Growing Cerebral Aneurysm , 2011, American Journal of Neuroradiology.

[210]  C M Putman,et al.  Hemodynamics and Bleb Formation in Intracranial Aneurysms , 2010, American Journal of Neuroradiology.

[211]  T. Ebbers,et al.  Improving Blood Flow Simulations by Incorporating Measured Subject-Specific Wall Motion , 2014 .

[212]  Kai Lawonn,et al.  Illustrative Visualization of Vascular Models for Static 2D Representations , 2015, MICCAI.

[213]  Bernhard Preim,et al.  Anatomy‐Guided Multi‐Level Exploration of Blood Flow in Cerebral Aneurysms , 2011, Comput. Graph. Forum.

[214]  D. Wiebers,et al.  Cerebral aneurysms. , 2006, The New England journal of medicine.

[215]  D. J. Taylor,et al.  Nasal architecture: form and flow , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[216]  M. Markl,et al.  Coregistration of Wall Shear Stress and Plaque Distribution within the Thoracic Aorta of Acute Stroke Patients , 2009 .

[217]  S. Lo Automatic mesh generation over intersecting surfaces , 1995 .

[218]  Greg Byrne,et al.  Vortex Dynamics in Cerebral Aneurysms , 2013 .

[219]  Kai Lawonn,et al.  Automatic Viewpoint Selection for Exploration of Time-Dependent Cerebral Aneurysm Data , 2017, Bildverarbeitung für die Medizin.

[220]  Bernhard Preim,et al.  The FLOWLENS: A Focus-and-Context Visualization Approach for Exploration of Blood Flow in Cerebral Aneurysms , 2011, IEEE Transactions on Visualization and Computer Graphics.

[221]  Daniel Duque,et al.  The incompressibility assumption in computational simulations of nasal airflow , 2017, Computer methods in biomechanics and biomedical engineering.

[222]  Hans-Christian Hege,et al.  Wall-PIV as a near wall flow validation tool for CFD: Application in a pathologic vessel enlargement (aneurysm) , 2009, J. Vis..

[223]  F. Mut,et al.  Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture , 2011, American Journal of Neuroradiology.

[224]  Timo Ropinski,et al.  Interactive 4D MRI blood flow exploration and analysis using line predicates , 2016, SIGRAD.

[225]  T. Ebbers,et al.  Quantitative Assessment of Turbulence and Flow Eccentricity in an Aortic Coarctation: Impact of Virtual Interventions , 2015, Cardiovascular engineering and technology.

[226]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[227]  Kai Lawonn,et al.  Sketching 2D Vessels and Vascular Diseases with Integrated Blood Flow , 2015, GRAPP.

[228]  Stefan Zachow,et al.  CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery , 2006 .

[229]  Scott B Reeder,et al.  4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot , 2012, Journal of Cardiovascular Magnetic Resonance.

[230]  Fabien Vivodtzev,et al.  Topology-preserving simplification of 2D nonmanifold meshes with embedded structures , 2005, The Visual Computer.

[231]  Bernhard Preim,et al.  Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics , 2016, IEEE Transactions on Visualization and Computer Graphics.

[232]  Bernhard Preim,et al.  Adapted Surface Visualization of Cerebral Aneurysms with Embedded Blood Flow Information , 2010, VCBM.

[233]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[234]  K Affeld,et al.  In Vitro Study of Near-Wall Flow in a Cerebral Aneurysm Model with and without Coils , 2010, American Journal of Neuroradiology.

[235]  Johan Thunberg,et al.  Shape‐aware surface reconstruction from sparse 3D point‐clouds , 2016, Medical Image Anal..

[236]  J. Schaller,et al.  Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms , 2012, Journal of The Royal Society Interface.

[237]  Gábor Janiga,et al.  Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries , 2016 .

[238]  Timo Ropinski,et al.  Coherence Maps for Blood Flow Exploration , 2016, VCBM/MedViz.

[239]  Colin Ware,et al.  Toward a Perceptual Theory of Flow Visualization , 2008, IEEE Computer Graphics and Applications.

[240]  Ulrich Kertzscher,et al.  The Concept of Rhinorespiratory Homeostasis—A New Approach to Nasal Breathing , 2013, Facial Plastic Surgery.

[241]  Wolfgang Schröder,et al.  Numerical simulation of the flow field in a model of the nasal cavity , 2003 .

[242]  David Saloner,et al.  Systolic Flow Displacement Correlates With Future Ascending Aortic Growth in Patients With Bicuspid Aortic Valves Undergoing Magnetic Resonance Surveillance , 2014, Investigative radiology.

[243]  Rüdiger Westermann,et al.  Interactive Mesh Smoothing for Medical Applications , 2013, Comput. Graph. Forum.

[244]  Bradley D. Allen,et al.  4D flow imaging with MRI. , 2014, Cardiovascular diagnosis and therapy.

[245]  Guillaume Houzeaux,et al.  Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture , 2014, Journal of NeuroInterventional Surgery.

[246]  Tobias Schaeffter,et al.  Accelerating 4D flow MRI by exploiting vector field divergence regularization , 2016, Magnetic resonance in medicine.

[247]  Bernhard Preim,et al.  Semi-Automatic Vortex Extraction in 4D PC-MRI Cardiac Blood Flow Data using Line Predicates , 2013, IEEE Transactions on Visualization and Computer Graphics.

[248]  Bernhard Preim,et al.  Adaptive Animations of Vortex Flow Extracted from Cardiac 4D PC-MRI Data , 2016, Bildverarbeitung für die Medizin.

[249]  Jinxiang Xi,et al.  Growth of Nasal and Laryngeal Airways in Children: Implications in Breathing and Inhaled Aerosol Dynamics , 2014, Respiratory Care.

[250]  Bernhard Preim,et al.  Enhancing Visibility of Blood Flow in Volume Rendered Cardiac 4D PC-MRI Data , 2016, Bildverarbeitung für die Medizin.

[251]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[252]  T. J. Chung,et al.  Computational Fluid Dynamics: Contents , 2010 .

[253]  Kai Lawonn,et al.  Occlusion-free Blood Flow Animation with Wall Thickness Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[254]  Philipp Berg,et al.  An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms. , 2015, Journal of biomechanics.

[255]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.