Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations

Phosphate materials are being extensively studied as lithium-ion battery electrodes. In this work, we present a high-throughput ab initio analysis of phosphates as cathode materials. Capacity, voltage, specific energy, energy density, and thermal stability are evaluated computationally on thousands of compounds. The limits in terms of gravimetric and volumetric capacity inherent to the phosphate chemistry are determined. Voltage ranges for all redox couples in phosphates are provided, and the structural factors influencing the voltages are analyzed. We reinvestigate whether phosphate materials are inherently safe and find that, for the same oxidation state, oxygen release happens thermodynamically at lower temperature for phosphates than for oxides. These findings are used to recommend specific chemistries within the phosphate class and to show the intrinsic limits of certain materials of current interest (e.g., LiCoPO4 and LiNiPO4).

[1]  I. Klich,et al.  Entanglement entropy from charge statistics: Exact relations for noninteracting many-body systems , 2010, 1008.5191.

[2]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[3]  U. V. Varadaraju,et al.  A new lithium vanadyl diphosphate Li2VOP2O7: Synthesis and electrochemical study , 2008 .

[4]  Jan L Allen,et al.  LiNiPO4-LiCoPO4 solid solutions as cathodes , 2004 .

[5]  M. Morcrette,et al.  A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 , 2003 .

[6]  J. Yamaki,et al.  Cathode properties of pyrophosphates for rechargeable lithium batteries , 2002 .

[7]  J. C. Schön,et al.  CMPZ– an algorithm for the efficient comparison of periodic structures , 2006 .

[8]  Robert Spotnitz,et al.  Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries , 2007 .

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  A. Durif,et al.  Crystal Chemistry of Condensed Phosphates , 1995 .

[11]  A. Yamada,et al.  Reaction Mechanism of the Olivine-Type Li x ( Mn0.6Fe0.4 ) PO 4 ( 0 ⩽ x ⩽ 1 ) , 2001 .

[12]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[13]  R. Murugan,et al.  Synthesis and characterization of LiNiyCo1−yPO4 (y=0–1) cathode materials for lithium secondary batteries , 2004 .

[14]  Gerbrand Ceder,et al.  THE LI INTERCALATION POTENTIAL OF LIMPO4 AND LIMSIO4 OLIVINES WITH M = FE, MN, CO, NI , 2004 .

[15]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[16]  J. Barker,et al.  Electrochemical Properties of Beta- LiVOPO4 Prepared by Carbothermal Reduction , 2004 .

[17]  R. Huggins,et al.  Relationships among electrochemical, thermodynamic, and oxygen potential quantities in lithium-transition metal-oxygen molten salt cells , 1984 .

[18]  U. V. Varadaraju,et al.  Electrochemical intercalation of lithium in the titanium hydrogeno phosphate Ti(HPO4)2·H2O , 2007 .

[19]  E. Murashova,et al.  Synthesis and Crystal Structure of the Double Polyphosphate CsMn(PO3)4 , 2000 .

[20]  J. Barker,et al.  Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries , 2003 .

[21]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[22]  L. Dupont,et al.  On the Energetic Stability and Electrochemistry of Li2MnSiO4 Polymorphs , 2008 .

[23]  J. Barker,et al.  Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries , 2002 .

[24]  Detlef Diesing,et al.  Trapping of transient processes in aluminium oxide thin films in a voltage pulse experiment , 2002 .

[25]  V. Manivannan,et al.  Tuning the Position of the Redox Couples in Materials with NASICON Structure by Anionic Substitution , 1998 .

[26]  Jean-Marie Tarascon,et al.  On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) , 2006 .

[27]  Jean-Marie Tarascon,et al.  One-Step Low-Temperature Route for the Preparation of Electrochemically Active LiMnPO4 Powders , 2004 .

[28]  V. Lesnyak,et al.  Crystallization of molybdenum and lithium double phosphates , 1999 .

[29]  Quan Kuang,et al.  Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries , 2011 .

[30]  U. V. Varadaraju,et al.  Topotactic insertion of lithium in the layered structure Li4VO(PO4)2: The tunnel structure Li5VO(PO4)2 , 2008 .

[31]  J. Tarascon,et al.  A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries , 2007 .

[32]  K. Vervaeke,et al.  Modulation of superconductivity by a magnetic template in Nb/BaFe12O19 hybrids , 2006 .

[33]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[34]  M. Whittingham,et al.  Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries , 2005 .

[35]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[36]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[37]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[38]  Yu Wang,et al.  Ferroelectric poling and converse-piezoelectric-effect-induced strain effects in La0.7Ba0.3MnO3 thin films grown on ferroelectric single-crystal substrates , 2009 .

[39]  Seung-Don Choi,et al.  Synthesis, crystal structure and magnetic properties of a new lithium cobalt metaphosphate, LiCo(PO3)3 , 2005 .

[40]  H. Burzlaff,et al.  A Procedure for the Clasification of Non‐Organic Crystal Structures. I. Theoretical Background , 1997 .

[41]  A. Kuhn,et al.  New ramsdellites LiTi2−yVyO4 (0≤y≤1): Synthesis, structure, magnetic properties and electrochemical performances as electrode materials for lithium batteries , 2010 .

[42]  G. Heymann,et al.  High pressure polymorphs of LiCoPO4 and LiCoAsO4 , 2009 .

[43]  J. Barker,et al.  Lithium metal phosphates, power and automotive applications , 2009 .

[44]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[45]  A. Mauger,et al.  Novel Lithium Iron Pyrophosphate (LiFe1.5P2O7) as a Positive Electrode for Li-Ion Batteries , 2007 .

[46]  M. E. A. Dompablo,et al.  Lithium Insertion in the High-Pressure Polymorph of FePO4 Computational Predictions and Experimental Findings , 2005 .

[47]  Gerbrand Ceder,et al.  First‐Principles Evidence for Stage Ordering in Li x CoO2 , 1998 .

[48]  Qiuming Gao,et al.  A new modification of NaCoPO4 with the zeolite ABW structure , 1999 .

[49]  Hajime Arai,et al.  Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds , 1996 .

[50]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[53]  L. Nazar,et al.  Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3. , 2003, Journal of the American Chemical Society.

[54]  D. D. MacNeil,et al.  A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes , 2002 .

[55]  J. Dahn,et al.  Morphology and Safety of Li [ Ni x Co1 − 2x Mn x ] O 2 ( 0 ⩽ x ⩽ 1 / 2 ) , 2003 .

[56]  C. Delmas,et al.  The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials , 1988 .

[57]  Byoungwoo Kang,et al.  Electrochemical Performance of LiMnPO4 Synthesized with Off-Stoichiometry , 2010 .

[58]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[59]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[60]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[61]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[62]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[63]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[64]  K. Nikolowski,et al.  Thermal Stability of LiCoPO4 Cathodes , 2008 .

[65]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[66]  T. L. Mercier,et al.  Li / β ‐ VOPO 4: A New 4 V System for Lithium Batteries , 1999 .

[67]  P. Berthet,et al.  Crystal structure and cation transport properties of the layered monodiphosphates : Li9M3(P2O7)3(PO4)2 (M = Al, Ga, Cr, Fe) , 1998 .

[68]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[69]  T. L. Mercier,et al.  Positive electrode materials for lithium batteries based on VOPO4 , 2001 .

[70]  Haiyan Chen,et al.  Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithium ion batteries , 2005 .

[71]  M. O'keeffe,et al.  A proposed rigorous definition of coordination number , 1979 .

[72]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[73]  N. Kalaiselvi,et al.  Feasibility studies on newly identified LiCrP2O7 compound for lithium insertion behavior , 2009 .

[74]  Jun-ichi Yamaki,et al.  Fluoride phosphate li2copo4f as a high-voltage cathode in li-ion batteries , 2005 .

[75]  C. Masquelier,et al.  Crystal structure and lithium insertion properties of orthorhombic Li2TiFe(PO4)3 and Li2TiCr(PO4)3 , 2004 .

[76]  Jan L. Allen,et al.  Ni3+/Ni2+ redox potential in LiNiPO4 , 2005 .

[77]  Claudia Felser,et al.  Doped semiconductors as half-metallic materials: Experiments and first-principles calculations of CoTi1-xMxSb (M = Sc, V, Cr, Mn, Fe) , 2008 .

[78]  J. Yamaki,et al.  Electrochemical insertion of lithium and sodium into (MoO2)2P2O7 , 2003 .

[79]  C. Masquelier,et al.  Lithium Insertion into Titanium Phosphates, Silicates, and Sulfates , 2002 .

[80]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[81]  D. Avnir,et al.  Continuous Symmetry Measures. 5. The Classical Polyhedra. , 1998, Inorganic chemistry.

[82]  Kisuk Kang,et al.  Phase Stability Study of Li1-xMnPO4 (0 <= x <= 1) Cathode for Li Rechargeable Battery , 2009 .

[83]  L. Nazar,et al.  Highly Reversible Li Insertion at 4 V in ε ‐ VOPO 4 / α ‐ LiVOPO4 Cathodes , 1999 .

[84]  P. Bruce,et al.  The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries , 2007 .

[85]  A. Mauger,et al.  Structure and magnetic properties of nanophase-LiFe1.5P2O7 , 2009 .

[86]  Guoying Chen Thermal Instability of Olivine-Type LiMnP04 Cathodes , 2010 .

[87]  J. Dahn,et al.  Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells , 1994 .

[88]  M. Whittingham,et al.  Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries , 2011 .

[89]  Anubhav Jain,et al.  Synthesis and Electrochemical Properties of Monoclinic LiMnBO3 as a Li Intercalation Material , 2011 .

[90]  Anubhav Jain,et al.  Recharging lithium battery research with first-principles methods , 2011 .

[91]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[92]  Linda F. Nazar,et al.  Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-Ion batteries , 2000 .

[93]  K. Amine,et al.  OLIVINE LICOPO4 AS 4.8 V ELECTRODE MATERIAL FOR LITHIUM BATTERIES , 1999 .

[94]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[95]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[96]  W. W. Barker,et al.  A high-temperature neutron diffraction study of pure and scandia-stabilized zirconia , 1973 .