Range-Space Variants and Inexact Matrix-Vector Products in Krylov Solvers for Linear Systems Arising from Inverse Problems

The objects of this paper are to introduce range-space variants of standard Krylov iterative solvers for unsymmetric and symmetric linear systems and to discuss how inexact matrix-vector products may be used in this context. The new range-space variants are characterized by possibly much lower storage and computational costs than their full-space counterparts, which is crucial in data assimilation applications and other inverse problems. However, this gain is achieved without sacrificing the inherent monotonicity properties of the original algorithms, which are of paramount importance in data assimilation applications. The use of inexact matrix-vector products is shown to further reduce computational cost in a controlled manner. Formal error bounds are derived on the size of the residuals obtained under two different accuracy models, and it is shown why a model controlling forward error on the product result is often preferable to one controlling backward error on the operator. Simple numerical examples f...

[1]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[2]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[3]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[4]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[5]  Gerard L. G. Sleijpen,et al.  Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[6]  Y. Trémolet Accounting for an imperfect model in 4D‐Var , 2006 .

[7]  Qiang Ye,et al.  Breakdown-free GMRES for Singular Systems , 2005, SIAM J. Matrix Anal. Appl..

[8]  Serge Gratton,et al.  An observation‐space formulation of variational assimilation using a restricted preconditioned conjugate gradient algorithm , 2009 .

[9]  Y. Trémolet Model‐error estimation in 4D‐Var , 2007 .

[10]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[11]  Julien Langou,et al.  Convergence in Backward Error of Relaxed GMRES , 2007, SIAM J. Sci. Comput..

[12]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[13]  Serge Gratton,et al.  Approximate Gauss-Newton Methods for Nonlinear Least Squares Problems , 2007, SIAM J. Optim..

[14]  Samuel Buis,et al.  Intercomparison of the primal and dual formulations of variational data assimilation , 2008 .

[15]  L. Amodei,et al.  Solution approchée pour un problème d'assimilation de données météorologiques avec prise en compte de l'erreur de modèle , 1995 .

[16]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[17]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[18]  Florence Rabier,et al.  Overview of global data assimilation developments in numerical weather‐prediction centres , 2005 .

[19]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[20]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[21]  J. van den Eshof,et al.  Relaxation strategies for nested Krylov methods , 2003 .

[22]  Serge Gratton,et al.  Limited‐memory preconditioners, with application to incremental four‐dimensional variational data assimilation , 2008 .