Biogenic Greenhouse Gas Emissions from Agriculture in Europe - Quantification and Mitigation

Die Dissertation analysiert Klimaschutzmasnahmen in der europaischen Landwirtschaft im Hinblick auf Potentiale, Umweltwirkungen, Minderungskosten und damit verbundene Unsicherheiten im Hinblick auf die Umsetzung des Kyoto-Protokolls. Dazu werden Literaturstudien durchgefuhrt, Lebensweganalysen und Treibhausgasinventare methodisch weiterentwickelt und schlieslich Treibhausgasemissionen und deren Minderungspotential auf europaischer Ebene berechnet und bewertet. Die europaische Landwirtschaft emittierte im Jahr 1995 0.84 ± 0.29 Tg N2O, 8.1 ± 1.9 Tg Methan (CH4) und 39 Tg ± 25 Kohlendioxid (CO2), insgesamt 470 ± 80 Tg CO2-Aquivalente oder 11 % der gesamten anthropogenen Treibhausgase der EU. Die hier entwickelte Berechnungsmethodik bildet regionale Charakteristika der landwirtschaftlichen Produktion ab und halbiert die methodische Unsicherheit gegenuber den offiziellen nationalen Inventaren. Landwirtschaftliche Boden Europas werden kurzfristig maximal etwa 200 Tg a-1 CO2 aufnehmen konnen, wobei entsprechende Masnahmen auch andere positive Umweltwirkungen zeigen. Das biologische Substitutionspotential von Bioenergie in der EU liegt zwischen 400 und 800 Tg a-1 CO2-Aquivalente. Aus Umweltaspekten heraus sollten perenne, holzige Kulturen statt annuelle Intensivkulturen genutzt werden. Das Minderungspotential der technischen Masnahmen zur direkten Treibhausgasminderung liegt zwischen 100 und 200 Tg a-1 CO2-Aquivalenten, z.B. durch eine Extensivierung der Pflanzenproduktion mit reduziertem Einsatz von Stickstoff bzw. technologische Innovation im Bereich der Tierhaltung, die moglichst von einem Abbau der Tierzahlen flankiert wird, sowie die Wiedervernassung von gedranten Moorboden. Eine Veranderung der soziookonomischen und politischen Rahmenbedingungen kann das Minderungspotential erhohen. This dissertation analyses relevant potential mitigation strategies of biogenic greenhouse gases (GHGs) in the agriculture of the European Union (EU) in light of the Kyoto Protocol. It identifies where important sources and mitigation potentials are located and what uncertainty, environmental ancillary effects and costs are associated with them. Literature reviews are performed and methodologies for environmental assessment and GHG accounting are further developed. On this basis, GHG emissions are quantified and reduction potentials are assessed at European level. In 1995, European agriculture emitted 0.84 ± 0.29 Tg N2O, 8.1 ± 1.9 Tg methane (CH4) and 39 Tg ± 25 carbon dioxide (CO2), which adds up to 470 ± 80 Tg CO2-equivalents or 11% of the overall anthropogenic greenhouse gas emissions of the EU. The detailed methodology developed here adequately resolves regional specifics of agricultural conditions and reduces the methodological uncertainty in the estimates to half of the one in the official national inventories. European agricultural soils will at maximum sequester carbon in the order of 100 Tg a-1 CO2 over the coming years, which may also provide other environmental benefits. The biological potential of bioenergy in the EU allows to substitute for 400 to 800 Tg a-1 CO2-equivalents. From an environmental perspective, the use of perennials, especially of residues and woody biomass, is preferable to intensively grown annual crops. The biological potential for technical GHG reduction measures in EU agriculture is between 100 and 200 Tg a-1 CO2-equivalents. Promising measures promote the extensivation of arable cropping by reducing nitrogen inputs, technological innovation in animal husbandry, which is best accompanied by a further decline in animal numbers, as well as rewetting drained organic soils. Most measures will provide ancillary environmental benefits. Changing the socio-economic and political frame conditions may enhance the GHG mitigation potential.

[1]  T. Nussbaumer Schadstoffbildung bei der Verbrennung von Holz , 1989 .

[2]  K. Shine Radiative Forcing of Climate Change , 2000 .

[3]  N. Batjes,et al.  Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil , 1998, Biology and Fertility of Soils.

[4]  A. Zehnder Biology of anaerobic microorganisms , 1988 .

[5]  W. Parton,et al.  Long-term large N and immediate small N addition effects on trace gas fluxes in the Colorado shortgrass steppe , 1998, Biology and Fertility of Soils.

[6]  Brussels eng Ammonia emissions to air in Western Europe , 1994 .

[7]  J. Liski,et al.  Trees as carbon sinks and sources in the European Union , 2000 .

[8]  M. Cuntz,et al.  Verification of German methane emission inventories and their recent changes based on atmospheric observations , 1999 .

[9]  P. Börjesson Environmental effects of energy crop cultivation in Sweden—I: Identification and quantification , 1999 .

[10]  Keith A. Smith,et al.  Emissions of N2O from Scottish agricultural soils, as a function of fertilizer N , 1998, Nutrient Cycling in Agroecosystems.

[11]  Arvin R. Mosier,et al.  Mitigating Agricultural Emissions of Methane , 1998 .

[12]  S. B. McLaughlin,et al.  Evaluating environmental consequences of producing herbaceous crops for bioenergy. , 1995 .

[13]  P. Boeckx,et al.  Two-year field study on the emission of N2O from coarse and middle-textured Belgian soils with different land use , 2001, Nutrient Cycling in Agroecosystems.

[14]  H. Janzen,et al.  Nitrous Oxide Emission From Long-Term Manured Soils , 1998 .

[15]  F. Sauer,et al.  Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period. , 1995, Journal of dairy science.

[16]  Per Ambus,et al.  Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems , 1995 .

[17]  F. Joos,et al.  Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data , 1999 .

[18]  P. Groffman,et al.  Nitrous oxide production in riparian zones and its importance to national emission inventories , 2000 .

[19]  Ernst-Detlef Schulze,et al.  Carbon and Nitrogen Cycling in European Forest Ecosystems , 2000, Ecological Studies.

[20]  K. A. Smith,et al.  Nitrous oxide emissions from fertilised grassland: A 2-year study of the effects of N fertiliser form and environmental conditions , 1997, Biology and Fertility of Soils.

[21]  W. Parton,et al.  Agricultural intensification and ecosystem properties. , 1997, Science.

[22]  A. V. Amstel,et al.  Improving the quality of national greenhouse gas inventories , 1999 .

[23]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[24]  H. Ahlgrimm,et al.  Methanemissionen aus der Schweinemast , 1998 .

[25]  Hj Norussis,et al.  SPSS for Windows , 1993 .

[26]  T. Downing,et al.  Implications of policies to prevent climate change for future food security. , 1994 .

[27]  Marjoleine C. Hanegraaf Environmental performance indicators for nitrogen , 1998 .

[28]  W. Larcher Ökologie der Pflanzen auf physiologischer Grundlage , 1980 .

[29]  P. Ciais,et al.  European source strengths and Northern Hemisphere baseline concentrations of radiatively active trace gases at Mace Head, Ireland , 1998 .

[30]  G. Grassi,et al.  Modern bioenergy in the European Union , 1999 .

[31]  C. Hendriks,et al.  Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change , 2003 .

[32]  David S. Powlson,et al.  Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long‐term experiments , 1997 .

[33]  Thomas Jungbluth,et al.  Greenhouse gas emissions from animal houses and manure stores , 2001, Nutrient Cycling in Agroecosystems.

[34]  K. Yagi,et al.  Possible options for mitigating methane emission from rice cultivation , 1997, Nutrient Cycling in Agroecosystems.

[35]  H. Neue Fluxes of methane from rice fields and potential for mitigation , 1997 .

[36]  D. Burton,et al.  Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing , 1994 .

[37]  U. Schmidhalter,et al.  Nitrous oxide emission from soil and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) , 2001, Biology and Fertility of Soils.

[38]  S. B. McLaughlin,et al.  A review of carbon and nitrogen balances in switchgrass grown for energy , 1998 .

[39]  E. Justes,et al.  Nitrous oxide emissions under different soil and land management conditions , 1998, Biology and Fertility of Soils.

[40]  David S. Powlson,et al.  Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture , 2000 .

[41]  Sven G. Sommer,et al.  Nitrogen and organic matter losses during storage of cattle and pig manure , 1998, The Journal of Agricultural Science.

[42]  J. Tiedje,et al.  Kinetic Explanation for Accumulation of Nitrite, Nitric Oxide, and Nitrous Oxide During Bacterial Denitrification , 1981, Applied and environmental microbiology.

[43]  Meinrat O. Andreae,et al.  Exchange of trace gases between terrestrial ecosystems and the atmosphere , 2004, Plant Growth Regulation.

[44]  A. Bouwman Direct emission of nitrous oxide from agricultural soils , 1996, Nutrient Cycling in Agroecosystems.

[45]  E. Holland,et al.  Gaseous Nitrogen Emissions from Grasslands , 1997 .

[46]  K. Minami,et al.  Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation , 1996, Plant and Soil.

[47]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[48]  A. Bouwman,et al.  Soils and the greenhouse effect. , 1990 .

[49]  F. Beese,et al.  Effects of Sugarbeet Residues on Soil Redox Potential and Nitrous Oxide Emission , 1995 .

[50]  J. Doran,et al.  Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils [Maize; Illinois; Kentucky; Minnesota; Nebraska] , 1984 .

[51]  B. F. Pain,et al.  Opportunities for reducing the environmental impact of dairy farming managements: a systems approach , 1996 .

[52]  Christian Körner,et al.  Biosphere responses to CO2 enrichment. , 2000 .

[53]  R. Drijber,et al.  Fluxes of Carbon Dioxide, Nitrous Oxide, and Methane in Grass Sod and Winter Wheat‐Fallow Tillage Management , 1998 .

[54]  K. Minami Atmospheric methane and nitrous oxide: sources, sinks and strategies for reducing agricultural emissions , 2004, Nutrient Cycling in Agroecosystems.

[55]  U. Schmidhalter,et al.  Influence of soil parameters on the effect of 3,4-dimethylpyrazole-phosphate as a nitrification inhibitor , 2001, Biology and Fertility of Soils.

[56]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[57]  L. Greene EHPnet: United Nations Framework Convention on Climate Change , 2000, Environmental Health Perspectives.

[58]  Keith A. Smith,et al.  Micrometeorological and chamber methods for measurement of nitrous oxide fluxes between soils and the atmosphere : overview and conclusions , 1994 .

[59]  J. Hahne,et al.  Spurengasemissionen aus der Mastschweinehaltung , 1999 .

[60]  D. Chadwick,et al.  Nitrous oxide and methane emissions following application of animal manures to grassland. , 2000 .

[61]  J. Oades Soil organic matter and structural stability: mechanisms and implications for management , 1984 .

[62]  J. Burniaux A Multi-Gas Assessment of the Kyoto Protocol , 2000 .

[63]  O. Heinemeyer,et al.  Microbial induced nitrous oxide emissions from an arable soil during winter , 1998 .

[64]  L. Dendooven,et al.  N dynamics and sources of N2O production following pig slurry application to a loamy soil , 1998, Biology and Fertility of Soils.

[65]  Oene Oenema,et al.  Greenhouse gas emissions from farmed organic soils: a review , 1997 .

[66]  A. Lind,et al.  Loss of Nitrous Oxide from Animal Manure in Dungheaps , 1993 .

[67]  Robert C. Harriss,et al.  Review and assessment of methane emissions from wetlands , 1993 .

[68]  R. Harrison,et al.  Studies on NO and N2O fluxes from a wheat field , 1995 .

[69]  Ü. Rannik,et al.  Respiration as the main determinant of carbon balance in European forests , 2000, Nature.

[70]  C. Kammann,et al.  Seasonal variability and mitigation options for N2O emissions from differently managed grasslands , 1998 .

[71]  Keith A. Smith,et al.  The control of nitrous oxide emissions from agricultural and natural soils , 2000 .

[72]  G. Robertson,et al.  Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere , 2000, Science.

[73]  T. Granli,et al.  Nitrous oxide from agriculture , 1994 .

[74]  V. R. Phillips,et al.  Concentrations and emission rates of aerial ammonia, nitrous oxide, methane, carbon dioxide, dust and endotoxin in UK broiler and layer houses. , 1997, British poultry science.

[75]  E. T. Elliott Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils , 1986 .

[76]  J. Tisdall,et al.  Organic matter and water‐stable aggregates in soils , 1982 .

[77]  A. Bouwman,et al.  Testing hypotheses on global emissions of nitrous oxide using atmospheric models , 2000 .

[78]  M. L. van Beusichem,et al.  Mitigation of nitrous oxide emission from dairy farming systems , 1998 .

[79]  J. M. Bremner Sources of nitrous oxide in soils , 2004, Nutrient Cycling in Agroecosystems.

[80]  George Bluhm,et al.  Assessment of alternative soil management practices on N2O emissions from US agriculture , 1998 .

[81]  D. Fowler,et al.  Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland , 1998 .

[82]  Geologian tutkimuskeskus,et al.  Global peat resources , 1996 .

[83]  Gero Benckiser,et al.  Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments , 2001, Biology and Fertility of Soils.

[84]  H. Grassl,et al.  Greenhouse effect of NOX , 1995, Environmental science and pollution research international.

[85]  O. Cléemput,et al.  Fluxes of Nitrous Oxide and Molecular Nitrogen from Irrigated Soils of Catalonia (Spain) , 1998 .

[86]  Ulf R. Boman,et al.  Integrated biomass energy systems and emissions of carbon dioxide , 1997 .

[87]  R. Marchetti,et al.  The effect of urea and pig slurry fertilization on denitrification, direct nitrous oxide emission, volatile fatty acids, water-soluble carbon and anthrone-reactive carbon in maize-cropped soil from the Po plain (Modena, Italy) , 1999, Biology and Fertility of Soils.

[88]  P. Groffman,et al.  Nitrous oxide production in riparian zones and groundwater , 1998, Nutrient Cycling in Agroecosystems.

[89]  Keith A. Smith,et al.  Nitrification and denitrification as sources of nitric oxide and nitrous oxide in a sandy loam soil , 1993 .

[90]  F. Rowland Stratospheric ozone depletion. , 1994, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[91]  C. Nevison Review of the IPCC methodology for estimating nitrous oxide emissions associated with agricultural leaching and runoff , 2000 .

[92]  Martin Kaltschmitt,et al.  Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe , 2003 .

[93]  S. Tom,et al.  Annual Report 1998 , 1999 .

[94]  Keith A. Smith,et al.  Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink , 2000 .

[95]  Keith A. Smith,et al.  Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils , 1998 .

[96]  Ch. Brühl,et al.  The impact of the future scenarios for methane and other chemically active gases on the GWP of methane , 1993 .

[97]  D. Ehhalt The atmospheric cycle of methane , 1974 .

[98]  A. Armstrong Nitrous oxide emissions from two sites in Southern England during winter 1981/1982 , 1983 .

[99]  Bernard R. Parresol,et al.  A new model for cork weight estimation in Northern Portugal with methodology for construction of confidence intervals , 2001 .

[100]  Uwe Geier,et al.  Life cycle assessment framework in agriculture on the farm level , 2000 .

[101]  E. Schulze,et al.  Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. , 2000, Tree physiology.

[102]  A. G. Allen,et al.  Nitrous oxide emissions from soils due to inputs of nitrogen from excreta return by livestock on grazed grassland in the U.K. , 1996 .

[103]  Rattan Lal,et al.  Land Use, Land-Use Change and Forestry , 2015 .

[104]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[105]  Jorge A. Delgado,et al.  Mitigation Alternatives to Decrease Nitrous Oxides Emissions and Urea-Nitrogen Loss and Their Effect on Methane Flux , 1996 .

[106]  A. Freibauer Regionalised inventory of biogenic greenhouse gas emissions from European agriculture , 2003 .

[107]  D. Sauerbeck CO2 emissions and C sequestration by agriculture – perspectives and limitations , 2001, Nutrient Cycling in Agroecosystems.

[108]  B. Hütsch Methane oxidation in non-flooded soils as affected by crop production — invited paper , 2001 .

[109]  R. Rabbinge,et al.  Changes in agriculture and land use in Europe , 2000 .

[110]  E. Davidson,et al.  Microbiological basis of NO and N2O production and consumption in soil. , 1989 .

[111]  Keith Paustian,et al.  CO2 Mitigation by Agriculture: An Overview , 1998 .

[112]  V. R. Phillips,et al.  A UK inventory of nitrous oxide emissions from farmed livestock , 1999 .