Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures

Seizures induce excitatory shifts in the reversal potential for GABAA-receptor-mediated responses, which may contribute to the intractability of electro-encephalographic seizures and preclude the efficacy of widely used GABAergic anticonvulsants such as phenobarbital. We now report that, in intact hippocampi prepared from neonatal rats and transgenic mice expressing Clomeleon, recurrent seizures progressively increase the intracellular chloride concentration ([Cl−]i) assayed by Clomeleon imaging and invert the net effect of GABAA receptor activation from inhibition to excitation assayed by the frequency of action potentials and intracellular Ca2+ transients. These changes correlate with increasing frequency of seizure-like events and reduction in phenobarbital efficacy. The Na+–K+–2Cl− (NKCC1) cotransporter blocker bumetanide inhibited seizure-induced neuronal Cl− accumulation and the consequent facilitation of recurrent seizures. Our results demonstrate a novel mechanism by which seizure activity leads to [Cl−]i accumulation, thereby increasing the probability of subsequent seizures. This provides a potential mechanism for the early crescendo phase of neonatal seizures.

[1]  C. Ikonomidou Triggers of apoptosis in the immature brain , 2009, Brain and Development.

[2]  A. N. van den Pol,et al.  Excitatory Actions of GABA after Neuronal Trauma , 1996, The Journal of Neuroscience.

[3]  J. Engel,et al.  Increased seizure susceptibility of the immature brain. , 1983, Brain research.

[4]  M. Woodin,et al.  Role of activity-dependent regulation of neuronal chloride homeostasis in development , 2007, Current Opinion in Neurobiology.

[5]  Yehezkel Ben-Ari,et al.  In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures , 2003, Nature Neuroscience.

[6]  Y. Ben-Ari,et al.  GABA Regulates Stem Cell Proliferation before Nervous System Formation , 2008, Epilepsy currents.

[7]  N Paneth,et al.  Phenobarbital compared with phenytoin for the treatment of neonatal seizures. , 1999, The New England journal of medicine.

[8]  K. Staley,et al.  A new form of feedback at the GABAA receptor , 2001, Nature Neuroscience.

[9]  A. Galanopoulou Dissociated Gender-Specific Effects of Recurrent Seizures on GABA Signaling in CA1 Pyramidal Neurons: Role of GABAA Receptors , 2008, The Journal of Neuroscience.

[10]  J. A. Payne,et al.  Comparison of Na-K-Cl Cotransporters , 1998, The Journal of Biological Chemistry.

[11]  M. Poo,et al.  Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Cl− Transporter Activity , 2003, Neuron.

[12]  P. Hannaert,et al.  Rat NKCC2/NKCC1 cotransporter selectivity for loop diuretic drugs , 2002, Naunyn-Schmiedeberg's Archives of Pharmacology.

[13]  B. Nahed,et al.  Roles of the cation–chloride cotransporters in neurological disease , 2008, Nature Clinical Practice Neurology.

[14]  J. Schneiderman,et al.  Hippocampal plasticity following epileptiform bursting produced by GABAA antagonists , 1994, Neuroscience.

[15]  V. Stein,et al.  Expression of the KCl cotransporter KCC2 parallels neuronal maturation and the emergence of low intracellular chloride , 2004, The Journal of comparative neurology.

[16]  D. Naylor,et al.  Trafficking of GABAA Receptors, Loss of Inhibition, and a Mechanism for Pharmacoresistance in Status Epilepticus , 2005, The Journal of Neuroscience.

[17]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[18]  P. Barr,et al.  Drug treatment of neonatal seizures by neonatologists and paediatric neurologists , 2005, Journal of paediatrics and child health.

[19]  John H. Zhang,et al.  Role of Cl- in cerebral vascular tone and expression of Na+-K+-2Cl- co-transporter after neonatal hypoxia-ischemia. , 2005, Canadian journal of physiology and pharmacology.

[20]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Thomas Euler,et al.  Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon , 2006, Neuron.

[22]  T. Iwaki,et al.  Reduction of KCC2 Expression and GABAAReceptor-Mediated Excitation after In Vivo Axonal Injury , 2002, The Journal of Neuroscience.

[23]  T J Sejnowski,et al.  When is an inhibitory synapse effective? , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Gaiarsa,et al.  GABA mediated excitation in immature rat CA3 hippocampal neurons , 1990, International Journal of Developmental Neuroscience.

[25]  R. Tyzio,et al.  Timing of the Developmental Switch in GABAA Mediated Signaling from Excitation to Inhibition in CA3 Rat Hippocampus Using Gramicidin Perforated Patch and Extracellular Recordings , 2007, Epilepsia.

[26]  P. Quilichini,et al.  Persistent epileptiform activity induced by low Mg2+ in intact immature brain structures , 2002, The European journal of neuroscience.

[27]  G. Holmes,et al.  Membrane potential of CA3 hippocampal pyramidal cells during postnatal development. , 2003, Journal of neurophysiology.

[28]  T A Pedley,et al.  The role of extracellular potassium in hippocampal epilepsy. , 1976, Archives of neurology.

[29]  Hiroki Toyoda,et al.  Cl− uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1 , 2004, The Journal of physiology.

[30]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[31]  B. Gähwiler,et al.  Epileptiform activity in rat hippocampus strengthens excitatory synapses , 2004, The Journal of physiology.

[32]  Feiqi Zhu,et al.  Long-term expressional changes of Na+–K+–Cl− co-transporter 1 (NKCC1) and K+–Cl− co-transporter 2 (KCC2) in CA1 region of hippocampus following lithium-pilocarpine induced status epilepticus (PISE) , 2008, Brain Research.

[33]  R. Wong,et al.  Synaptic modifications accompanying epileptogenesis in vitro: long-term depression of GABA-mediated inhibition , 1993, Brain Research.

[34]  R. Macdonald,et al.  Rapid Seizure-Induced Reduction of Benzodiazepine and Zn2+ Sensitivity of Hippocampal Dentate Granule Cell GABAA Receptors , 1997, The Journal of Neuroscience.

[35]  I. Módy,et al.  Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABAA receptor-mediated postsynaptic conductance. , 1992, Journal of neurophysiology.

[36]  Sylvain Rheims,et al.  Excitatory GABA in rodent developing neocortex in vitro. , 2008, Journal of neurophysiology.

[37]  E Neher,et al.  Measurement of extracellular potassium activity in cat cortex. , 1973, Brain research.

[38]  B. Forbush,et al.  Activation of the Na-K-Cl Cotransporter NKCC1 Detected with a Phospho-specific Antibody* , 2002, The Journal of Biological Chemistry.

[39]  J. E. Wells,et al.  GABAergic Inhibition Suppresses Paroxysmal Network Activity in the Neonatal Rodent Hippocampus and Neocortex , 2000, The Journal of Neuroscience.

[40]  F. Jensen,et al.  NKCC1 transporter facilitates seizures in the developing brain , 2005, Nature Medicine.

[41]  Dandan Sun,et al.  Stimulation of Na+-K+-2Cl-cotransporter in neuronal cells by excitatory neurotransmitter glutamate. , 1998, American journal of physiology. Cell physiology.

[42]  B H Gähwiler,et al.  Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons. , 1989, Journal of neurophysiology.

[43]  J. Volpe Neurology of the Newborn , 1959, Major problems in clinical pediatrics.

[44]  K. Staley,et al.  Bumetanide enhances phenobarbital efficacy in a neonatal seizure model , 2008, Annals of neurology.

[45]  A. Sik,et al.  Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation , 2008, The Journal of physiology.

[46]  Hongjun Song,et al.  GABA regulates synaptic integration of newly generated neurons in the adult brain , 2006, Nature.

[47]  E. Delpire,et al.  Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. , 2007, American journal of physiology. Cell physiology.

[48]  M. Gutnick,et al.  Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat , 1977, Experimental Brain Research.

[49]  J. L. Stringer,et al.  Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. , 2000, Journal of neurophysiology.

[50]  Kevin J. Staley,et al.  Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures , 2009, Neuron.

[51]  Roustem Khazipov,et al.  Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus , 2004, The European journal of neuroscience.

[52]  Claudio Rivera,et al.  Cation-Chloride Cotransporters and Neuronal Function , 2009, Neuron.

[53]  L. Velíšek,et al.  Age-dependent effects of gamma-aminobutyric acid agents on flurothyl seizures. , 1995, Epilepsia.

[54]  Dmytro Isaev,et al.  Shunting and hyperpolarizing GABAergic inhibition in the high‐potassium model of ictogenesis in the developing rat hippocampus , 2007, Hippocampus.

[55]  Juha Voipio,et al.  The cation‐chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus , 2006, The Journal of physiology.

[56]  B. Forbush,et al.  A Regulatory Locus of Phosphorylation in the N Terminus of the Na-K-Cl Cotransporter, NKCC1* , 2002, The Journal of Biological Chemistry.

[57]  R. Khazipov,et al.  Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery , 2006, Science.

[58]  J Connell,et al.  Clinical and EEG response to anticonvulsants in neonatal seizures. , 1989, Archives of disease in childhood.

[59]  W. C. Hall,et al.  Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon , 2008, Brain cell biology.

[60]  A. Brooks-Kayal,et al.  A KCNQ channel opener for experimental neonatal seizures and status epilepticus , 2009, Annals of neurology.

[61]  J. A. Payne,et al.  Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. , 1997, The American journal of physiology.

[62]  L. Velíšek,et al.  Age‐Dependent Effects of γ‐Aminobutyric Acid Agents on Flurothyl Seizures , 1995 .

[63]  G. Boylan,et al.  Neonatal seizures and their treatment , 2003, Current opinion in neurology.

[64]  J. A. Payne Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]oregulation. , 1997, American journal of physiology. Cell physiology.

[65]  H. Goodkin,et al.  Subunit-Specific Trafficking of GABAA Receptors during Status Epilepticus , 2008, The Journal of Neuroscience.

[66]  Kevin J. Staley,et al.  Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses , 1999, Nature Neuroscience.

[67]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[68]  X. Leinekugel,et al.  Maturation of kainate‐induced epileptiform activities in interconnected intact neonatal limbic structures in vitro , 1999, The European journal of neuroscience.

[69]  K. Staley,et al.  Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport , 1999, The Journal of physiology.

[70]  D. Prince,et al.  Impaired Cl- extrusion in layer V pyramidal neurons of chronically injured epileptogenic neocortex. , 2005, Journal of neurophysiology.

[71]  Y. Ben-Ari,et al.  Long‐lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. , 1988, The Journal of physiology.

[72]  J. L. Stringer,et al.  Activity-Dependent Intracellular Acidification Correlates with the Duration of Seizure Activity , 2000, The Journal of Neuroscience.

[73]  R. Macdonald,et al.  Differential regulation of γ‐aminobutyric acid receptor channels by diazepam and phenobarbital , 1989 .

[74]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[75]  Y. Ben-Ari,et al.  Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro , 2003, Epilepsia.

[76]  Y. Ben-Ari,et al.  Bumetanide, an NKCC1 antagonist, does not prevent formation of epileptogenic focus but blocks epileptic focus seizures in immature rat hippocampus. , 2009, Journal of neurophysiology.

[77]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[78]  Y. Ben-Ari,et al.  Dual Role of GABA in the Neonatal Rat Hippocampus , 1999, Developmental Neuroscience.

[79]  E. Delpire Cation-Chloride Cotransporters in Neuronal Communication. , 2000, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[80]  H. Luhmann,et al.  Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse , 2007, Neuropharmacology.

[81]  K. Staley,et al.  Thermodynamic Regulation of NKCC1-Mediated Cl− Cotransport Underlies Plasticity of GABAA Signaling in Neonatal Neurons , 2008, The Journal of Neuroscience.

[82]  R. Macdonald,et al.  Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. , 1989, Annals of neurology.

[83]  J. DeFelipe,et al.  Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy , 1999, Nature Neuroscience.

[84]  H. Matsuzaki,et al.  Developmental changes in KCC1, KCC2, and NKCC1 mRNA expressions in the rat brain. , 2002, Brain research. Developmental brain research.

[85]  K. Staley,et al.  Excitatory Actions of Endogenously Released GABA Contribute to Initiation of Ictal Epileptiform Activity in the Developing Hippocampus , 2003, The Journal of Neuroscience.

[86]  D. Prince,et al.  Extracellular potassium activity during epileptogenesis. , 1974, Experimental neurology.

[87]  L. Ment,et al.  Neonatal seizures: multicenter variability in current treatment practices. , 2007, Pediatric neurology.

[88]  M. Poo,et al.  Excitatory GABA Action Is Essential for Morphological Maturation of Cortical Neurons In Vivo , 2007, The Journal of Neuroscience.

[89]  Hemal R. Pathak,et al.  Disrupted Dentate Granule Cell Chloride Regulation Enhances Synaptic Excitability during Development of Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[90]  G. Bydder,et al.  Origin and timing of brain lesions in term infants with neonatal encephalopathy , 2003, The Lancet.

[91]  R. Sankar,et al.  Bumetanide inhibits rapid kindling in neonatal rats , 2009, Epilepsia.

[92]  G. Gamba Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. , 2005, Physiological reviews.

[93]  Hilmar Bading,et al.  Microelectrode array recordings of cultured hippocampal networks reveal a simple model for transcription and protein synthesis‐dependent plasticity , 2005, The Journal of physiology.

[94]  X. Leinekugel,et al.  A Novel In Vitro Preparation: the Intact Hippocampal Formation , 1997, Neuron.

[95]  B. Forbush,et al.  Short-term Stimulation of the Renal Na-K-Cl Cotransporter (NKCC2) by Vasopressin Involves Phosphorylation and Membrane Translocation of the Protein* , 2003, Journal of Biological Chemistry.

[96]  G. Feng,et al.  The Chloride Transporter Na+-K+-Cl− Cotransporter Isoform-1 Contributes to Intracellular Chloride Increases after In Vitro Ischemia , 2006, The Journal of Neuroscience.

[97]  George J. Augustine,et al.  A Genetically Encoded Ratiometric Indicator for Chloride Capturing Chloride Transients in Cultured Hippocampal Neurons , 2000, Neuron.

[98]  R. Miles,et al.  Contributions of intrinsic and synaptic activities to the generation of neuronal discharges in in vitro hippocampus , 2000, The Journal of physiology.

[99]  K. Gauvreau,et al.  The Current Etiologic Profile and Neurodevelopmental Outcome of Seizures in Term Newborn Infants , 2006, Pediatrics.

[100]  Eli M. Mizrahi,et al.  Characterization and classification of neonatal seizures , 1987, Neurology.