Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria

[1]  O. Akhavan,et al.  Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents , 2010 .

[2]  O. Akhavan Graphene nanomesh by ZnO nanorod photocatalysts. , 2010, ACS nano.

[3]  Wei Ma,et al.  Direct electron transfer and electrocatalysis of hemoglobin in ZnO coated multiwalled carbon nanotubes and Nafion composite matrix. , 2010, Bioelectrochemistry.

[4]  Ravi Bhatia,et al.  Preparation, characterization and electrical conductivity studies of MWCNT/ZnO nanoparticles hybrid , 2010 .

[5]  O. Akhavan The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets , 2010 .

[6]  O. Akhavan,et al.  Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria , 2009 .

[7]  S. Mohajerzadeh,et al.  Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation , 2009 .

[8]  Dong-Hui Kim,et al.  Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods , 2009 .

[9]  Seung-Ho Jung,et al.  High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation , 2009 .

[10]  Liaochuan Jiang,et al.  Photoelectrochemical Study on Charge Transfer Properties of ZnO Nanowires Promoted by Carbon Nanotubes , 2009 .

[11]  S. Fu,et al.  Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes , 2009 .

[12]  S. Chang,et al.  Novel fabrication of UV photodetector based on ZnO nanowire/p-GaN heterojunction , 2009 .

[13]  Xuejing Wang,et al.  Sol‐gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property , 2009 .

[14]  Dong Han,et al.  Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. , 2009, Journal of colloid and interface science.

[15]  R. Vijayaraghavan,et al.  Nanocrystalline zinc oxide for the decontamination of sarin. , 2009, Journal of hazardous materials.

[16]  W. Sigmund,et al.  Photocatalytic Carbon‐Nanotube–TiO2 Composites , 2009 .

[17]  Chao-Ming Huang,et al.  Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes , 2009 .

[18]  Prashant V Kamat,et al.  Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[19]  Dong-Wha Park,et al.  Preparation of ZnO nanopowders by thermal plasma and characterization of photo-catalytic property , 2009 .

[20]  Jianji Wang,et al.  Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities , 2008, Nanotechnology.

[21]  Michael V. Liga,et al.  Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. , 2008, Water research.

[22]  Juan Francisco Hernández-Sierra,et al.  The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. , 2008, Nanomedicine : nanotechnology, biology, and medicine.

[23]  Xinyong Li,et al.  Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology , 2008 .

[24]  Menachem Elimelech,et al.  Antibacterial effects of carbon nanotubes: size does matter! , 2008, Langmuir : the ACS journal of surfaces and colloids.

[25]  Masahiro Yoshimura,et al.  Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications , 2008 .

[26]  J. P. Liu,et al.  Hydrothermally grown ZnO nanorods on self-source substrate and their field emission , 2007 .

[27]  Anusorn Kongkanand,et al.  Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. , 2007, Nano letters.

[28]  B. Su,et al.  Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties , 2006 .

[29]  Mark E. Thompson,et al.  Synthesis and Electronic Properties of Individual Single‐Walled Carbon Nanotube/Polypyrrole Composite Nanocables , 2005 .

[30]  Wendong Wang,et al.  Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method , 2005 .

[31]  L. Gao,et al.  Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity , 2005 .

[32]  J. Sawai Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. , 2003, Journal of microbiological methods.

[33]  V. Murugesan,et al.  Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2 , 2003 .

[34]  W. Estrada,et al.  Spray pyrolysis deposited zinc oxide films for photo-electrocatalytic degradation of methyl orange: influence of the pH , 2002 .

[35]  S. Icli,et al.  Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight , 2001 .

[36]  T. Ebbesen Wetting, filling and decorating carbon nanotubes , 1996 .

[37]  Katsumi Tanigaki,et al.  Opening and purification of carbon nanotubes in high yields , 1995 .

[38]  S. Mohajerzadeh,et al.  Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes , 2011 .

[39]  K. Nahm,et al.  Hydrogen storage of nanostructured TiO2-impregnated carbon nanotubes , 2009 .

[40]  H. Chang,et al.  Incorporation of carbon nanotube into direct-patternable ZnO thin film formed by photochemical solution deposition , 2009 .