A literature survey on Facial Expression Recognition using Global Features

 Abstract— Facial Expression Recognition (FER) is a rapidly growing and ever green research field in the area of Computer Vision, Artificial Intelligent and Automation. There are many application which uses Facial Expression to evaluate human nature, feelings, judgment, opinion. Recognizing Human Facial Expression is not a simple task because of some circumstances due to illumination, facial occlusions, face color/shape etc. In these paper, we present some method/techniques such as Principal Component Analysis (PCA), Linear Discriminate Analysis (LDA), Gabor Filter/Energy, Line Edge Mapping (LEM), Neural Network, Independent Component Analysis (ICA) which will directly or/and indirectly used to recognize human expression in various condition.

[1]  P. Ekman,et al.  Constants across cultures in the face and emotion. , 1971, Journal of personality and social psychology.

[2]  S. Demleitner [Communication without words]. , 1997, Pflege aktuell.

[3]  Christine L. Lisetti,et al.  Facial Expression Recognition Using a Neural Network , 1998, FLAIRS.

[4]  Michael J. Lyons,et al.  Coding facial expressions with Gabor wavelets , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[5]  Takeo Kanade,et al.  Detection, tracking, and classification of action units in facial expression , 2000, Robotics Auton. Syst..

[6]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[7]  Jyh‐Yeong Chang,et al.  Automated facial expression recognition system using neural networks , 2001 .

[8]  Siu Cheung Hui,et al.  Facial expression recognition from line-based caricatures , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[9]  David Zhang,et al.  Palmprint feature extraction using 2-D Gabor filters , 2003, Pattern Recognit..

[10]  Qiang Ji,et al.  Facial event classification with task oriented dynamic Bayesian network , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[11]  Franck Davoine,et al.  Facial expression recognition and synthesis based on an appearance model , 2004, Signal Process. Image Commun..

[12]  Ying-li Tian,et al.  Evaluation of Face Resolution for Expression Analysis , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[13]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[14]  Tomasz Andrysiak,et al.  Image retrieval based on hierarchical Gabor filters , 2005 .

[15]  Lianwen Jin,et al.  A New Facial Expression Recognition Method Based on Local Gabor Filter Bank and PCA plus LDA , 2006 .

[16]  J. Whitehill Automatic Real-Time Facial Expression Recognition for Signed Language Translation , 2007 .

[17]  Qingshan Liu,et al.  Boosting Coded Dynamic Features for Facial Action Units and Facial Expression Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Dimitrios I. Fotiadis,et al.  A Region Based Methodology for Facial Expression Recognition , 2008, BIOSIGNALS.

[19]  M. Sasikumar,et al.  Analysis of Facial Expressions from Video Images using PCA , 2008 .

[20]  Patrick Shen-Pei Wang,et al.  Performance Comparisons of Facial Expression Recognition in Jaffe Database , 2008, Int. J. Pattern Recognit. Artif. Intell..

[21]  R. S. Jadon,et al.  Effectiveness of Eigenspaces for Facial Expressions Recognition , 2009 .

[22]  Maja Pantic,et al.  Facial Expression Recognition , 2009, Encyclopedia of Biometrics.

[23]  Alberto Del Bimbo,et al.  3D facial expression recognition using SIFT descriptors of automatically detected keypoints , 2011, The Visual Computer.

[24]  Manal Abdullah,et al.  Optimizing Face Recognition Using PCA , 2012, ArXiv.

[25]  Katherine B. Martin,et al.  Facial Action Coding System , 2015 .