Dielectric‐loaded plasmonic waveguide components: Going practical

Surface plasmon propagating modes supported by metal/dielectric interfaces in various configurations can be used for radiation guiding similarly to conventional dielectric waveguides. Plasmonic waveguides offer two attractive features: subdiffraction mode confinement and the presence of conducting elements at the mode-field maximum. The first feature can be exploited to realize ultrahigh density of nanophotonics components, whereas the second feature enables the development of dynamic components controlling the plasmon propagation with ultralow signals, minimizing heat dissipation in switching elements. While the first feature is yet to be brought close to the domain of practical applications because of high propagation losses, the second one is already being investigated for bringing down power requirements in optical communication systems. In this review, the latest application-oriented research on radiation modulation and routing using thermo-optic dielectric-loaded plasmonic waveguide components integrated with silicon-based photonic waveguides is overviewed. Their employment under conditions of real telecommunications is addressed, highlighting challenges and perspectives.

[1]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[2]  P. Sun,et al.  Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. , 2010, Optics express.

[3]  María Ujué González,et al.  Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy , 2007 .

[4]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[5]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[6]  Kristjan Leosson,et al.  Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. , 2011, Optics letters.

[7]  Pierre Berini,et al.  Characterization of long-range surface-plasmon-polariton waveguides , 2005 .

[8]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers , 2007 .

[9]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[10]  E. Economou Surface Plasmons in Thin Films , 1969 .

[11]  Xue-Wen Chen,et al.  Highly efficient interfacing of guided plasmons and photons in nanowires. , 2009, Nano letters.

[12]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[13]  Karim Hassan,et al.  Thermo-optical control of dielectric loaded plasmonic racetrack resonators , 2011 .

[14]  Y. Vlasov,et al.  Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. , 2010, Optics letters.

[15]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[16]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[17]  Laurent Markey,et al.  Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. , 2009, Optics letters.

[18]  S. Bozhevolnyi,et al.  Dielectric-Loaded Plasmonic Waveguide Components , 2011 .

[19]  Qing Yang,et al.  Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. , 2009, Nano letters.

[20]  Michal Lipson,et al.  Subwavelength confinement in an integrated metal slot waveguide on silicon. , 2006, Optics letters.

[21]  B. Chichkov,et al.  Laser-fabricated dielectric optical components for surface plasmon polaritons. , 2006, Optics letters.

[22]  Eloïse Devaux,et al.  Wavelength selective nanophotonic components utilizing channel plasmon polaritons. , 2007, Nano letters.

[23]  A Kumar,et al.  0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics. , 2012, Optics express.

[24]  S. Bozhevolnyi,et al.  Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides , 2010, Journal of Lightwave Technology.

[25]  Harry A. Atwater The promise of plasmonics. , 2007 .

[26]  J. Dionne,et al.  Silicon-Based Plasmonics for On-Chip Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Romain Quidant,et al.  Performance of electro-optical plasmonic ring resonators at telecom wavelengths. , 2012, Optics express.

[28]  Siegfried Janz,et al.  Compact and low power thermo-optic switch using folded silicon waveguides. , 2009, Optics express.

[29]  Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides , 2011 .

[30]  T. Ebbesen,et al.  Channel plasmon-polariton guiding by subwavelength metal grooves. , 2005, Physical review letters.

[31]  Min Qiu,et al.  Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface , 2009 .

[32]  J. Yardley,et al.  Fast and low-power thermooptic switch on thin silicon-on-insulator , 2003, IEEE Photonics Technology Letters.

[33]  Laurent Markey,et al.  Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. , 2008, Optics express.

[34]  H. Avramopoulos,et al.  Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip , 2012, IEEE Photonics Technology Letters.

[35]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[36]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[37]  Sergey I. Bozhevolnyi,et al.  Plasmonic nanoguides , 2009, 2009 IEEE/LEOS Winter Topicals Meeting Series.

[38]  H. Avramopoulos,et al.  Interfacing Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides: Theoretical Analysis and Experimental Demonstration , 2012, IEEE Journal of Quantum Electronics.

[39]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[40]  Abu Bakar Mohammad,et al.  MMI-MZI Polymer Thermo-Optic Switch With a High Refractive Index Contrast , 2011, Journal of Lightwave Technology.

[41]  Hong Cai,et al.  Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms , 2011, IEEE Photonics Technology Letters.

[42]  Sergey I. Bozhevolnyi,et al.  Integrated power monitor for long-range surface plasmon polaritons , 2005 .

[43]  Karim Hassan,et al.  Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides , 2011 .

[44]  Sergey I. Bozhevolnyi,et al.  Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization , 2008 .

[45]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[46]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .

[47]  Younan Xia,et al.  Observation of plasmon propagation, redirection, and fan-out in silver nanowires. , 2006, Nano letters.

[48]  Alexey V. Krasavin,et al.  Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides , 2010 .

[49]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[50]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[51]  Eyal Feigenbaum,et al.  Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. , 2010, Nano letters.

[52]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[53]  N. Xie,et al.  Very Low-Power, Polarization-Independent, and High-Speed Polymer Thermooptic Switch , 2009, IEEE Photonics Technology Letters.

[54]  H. Avramopoulos,et al.  Active Plasmonics in True Data Traffic Applications: Thermo-Optic On/Off Gating Using a Silicon-Plasmonic Asymmetric Mach–Zehnder Interferometer , 2012, IEEE Photonics Technology Letters.

[55]  Nikos Pleros,et al.  Active plasmonics in WDM traffic switching applications , 2012, Scientific Reports.

[56]  Laurent Markey,et al.  Power monitoring in dielectric-loaded surface plasmon-polariton waveguides. , 2011, Optics express.