An indirect approach for automatic generation of quadrilateral meshes with arbitrary line constraints

A new approach to the automatic generation of a quadrilateral mesh with arbitrary line constraints is proposed in this paper. It is an indirect all-quad mesh generation and presented in the following steps: (1) discretizing the constrained lines within the domain; (2) converting the above domain to a triangular mesh together with the line constraints; (3) transforming the generated triangular mesh with line constraints to an all-quad mesh through performing an advancing front algorithm from the line constraints, which enables the construction of quadrilaterals layer by layer, and roughly keeps the feature of the initial triangular mesh; (4) optimizing the topology of the quadrilateral mesh to reduce the number of irregular nodes; (5) smoothing the generated mesh toward high-quality all-quad mesh generation. Finally, a few application examples are given to demonstrate the reliability and usefulness of the proposed algorithm. Copyright (C) 2011 John Wiley & Sons, Ltd.

[1]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[2]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[3]  H. Borouchaki,et al.  Adaptive triangular–quadrilateral mesh generation , 1998 .

[4]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[5]  Jeffrey A. Talbert,et al.  Development of an automatic, two‐dimensional finite element mesh generator using quadrilateral elements and Bezier curve boundary definition , 1990 .

[6]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[7]  Huilin Xing,et al.  Construction of an Intraplate Fault System Model of South Australia, and Simulation Tool for the iSERVO Institute Seed Project , 2006 .

[8]  Kenji Shimada,et al.  An Angle-Based Approach to Two-Dimensional Mesh Smoothing , 2000, IMR.

[9]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[10]  C. Lee,et al.  A new scheme for the generation of a graded quadrilateral mesh , 1994 .

[11]  Huilin Xing,et al.  3D Mesh Generation in Geocomputing , 2009 .

[12]  Kyu-Yeul Lee,et al.  An algorithm for automatic 2D quadrilateral mesh generation with line constraints , 2003, Comput. Aided Des..

[13]  John M. Sullivan,et al.  Automatic conversion of triangular finite element meshes to quadrilateral elements , 1991 .

[14]  Paul Kinney,et al.  “CleanUp: Improving Quadrilateral Finite Element Meshes” , 2008 .

[15]  Mikhail Shashkov,et al.  An Algorithm for Aligning a Quadrilateral Grid with Internal Boundaries , 2000 .

[16]  S. H. Lo,et al.  Finite element mesh generation over analytical curved surfaces , 1996 .

[17]  Barry Joe,et al.  Quadrilateral mesh generation in polygonal regions , 1995, Comput. Aided Des..

[18]  J. Cavendish Automatic triangulation of arbitrary planar domains for the finite element method , 1974 .

[19]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[20]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[21]  Rainald Löhner,et al.  Extensions and improvements of the advancing front grid generation technique , 1996 .

[22]  K. R. Grice,et al.  Robust, geometrically based, automatic two‐dimensional mesh generation , 1987 .

[23]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..