Rubrene polycrystalline transistor channel achieved through in situ vacuum annealing

The authors report on the rubrene polycrystalline film growth for its thin film transistor (TFT) applications. Amorphous rubrene thin film was initially obtained on 200-nm-thick SiO2∕Si substrate at 40°C in a vacuum chamber by thermal evaporation but in situ long time postannealing at the elevated temperatures of 60–80°C transformed the amorphous phase into crystalline. Based on an optimum condition to cover the whole channel area with polycrystalline film, the authors have fabricated a rubrene TFT with a relatively high field effect mobility of 0.002cm2∕Vs, an on/off ratio of ∼104, and a low threshold voltage of −9V.

[1]  S. Im,et al.  Rubrene thin-film transistors with crystalline and amorphous channels , 2007 .

[2]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[3]  Byoungnam Park,et al.  Ambipolar rubrene thin film transistors , 2006 .

[4]  I. Biaggio,et al.  Primary photoexcitations and the origin of the photocurrent in rubrene single crystals. , 2005, Physical review letters.

[5]  C. Kloc,et al.  Field effect studies on rubrene and impurities of rubrene , 2006 .

[6]  P. Blom,et al.  Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics , 2005, Nature materials.

[7]  D. Käfer,et al.  Growth of crystalline rubrene films with enhanced stability. , 2005, Physical chemistry chemical physics : PCCP.

[8]  A. P. Ramirez,et al.  Low-temperature field effect in a crystalline organic material , 2004, cond-mat/0405077.

[9]  J. Rogers,et al.  High‐Performance n‐ and p‐Type Single‐Crystal Organic Transistors with Free‐Space Gate Dielectrics , 2004 .

[10]  C. Goldmann,et al.  Effects of Polarized Organosilane Self-Assembled Monolayers on Organic Single-Crystal Field-Effect Transistors , 2004, cond-mat/0407407.

[11]  James R. Sheats,et al.  Manufacturing and commercialization issues in organic electronics , 2004 .

[12]  Hiroshi Kawaguchi,et al.  High mobility of pentacene field-effect transistors with polyimide gate dielectric layers , 2004 .

[13]  Ute Zschieschang,et al.  Organic electronics on paper , 2004 .

[14]  J. Rogers,et al.  Intrinsic charge transport on the surface of organic semiconductors. , 2004, Physical review letters.

[15]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[16]  Ute Zschieschang,et al.  High-mobility polymer gate dielectric pentacene thin film transistors , 2002 .

[17]  C. D. Sheraw,et al.  Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates , 2002 .

[18]  Zhenan Bao,et al.  Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits , 2000 .

[19]  C. M. Hart,et al.  Low-cost all-polymer integrated circuits , 1998, Proceedings of the 24th European Solid-State Circuits Conference.