Structural and optical properties of CZTS nanoparticles prepared by a colloidal process

[1]  S. Velumani,et al.  Hot injection synthesis of Cu(In, Ga)Se2 nanocrystals with tunable bandgap , 2018 .

[2]  M. Green,et al.  Boosting the kesterite Cu2ZnSnS4 solar cells performance by diode laser annealing , 2018 .

[3]  D. Mcilroy,et al.  Investigations of RF magnetron sputtered CZTS absorber layer thin films prepared using sulfur induced binary targets without sulfurization , 2018 .

[4]  P. Xiang,et al.  Investigation of Cu2ZnSnS4 thin films with controllable Cu composition and its influence on photovoltaic properties for solar cells , 2017 .

[5]  J. M. Merino,et al.  Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment , 2017 .

[6]  M. Balboul,et al.  Synthesis and optical characterization of n-ZnO and p-Cu2ZnSnS4 nanocrystalline thin films for low cost solar cells , 2016 .

[7]  R. Ganesan,et al.  Characterization of thermally evaporated CZTSe thin films used by compositionally controlled alloys , 2016 .

[8]  Lijun Jiang,et al.  Enhanced compactness and element distribution uniformity of Cu2ZnSnS4 thin film by increasing precursor S content , 2016, Rare Metals.

[9]  Zhi-ping Wang,et al.  Preparation and characterization of Cu2ZnSn(S,Se)4 film by drop-coating of Cu2ZnSnS4 nanoink , 2016, Rare Metals.

[10]  Fangyang Liu,et al.  Understanding the Key Factors of Enhancing Phase and Compositional Controllability for 6% Efficient Pure-Sulfide Cu2ZnSnS4 Solar Cells Prepared from Quaternary Wurtzite Nanocrystals , 2016 .

[11]  Yen-Chih Chen,et al.  Preparation of Cu2ZnSnS4 (CZTS) sputtering target and its application to the fabrication of CZTS thin-film solar cells , 2016 .

[12]  M. Green,et al.  Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu2ZnSnS4 solar cells by forming nearly micron-sized large grains , 2015 .

[13]  Xuhui Sun,et al.  Effects of Cu content on the photoelectrochemistry of Cu2ZnSnS4 nanocrystal thin films , 2015 .

[14]  J. Pi,et al.  Synthesis and optical properties of Cu2SnZnS4 films under different sulfur atmospheres , 2018, Rare Metals.

[15]  S. Mallick,et al.  Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors , 2014 .

[16]  Ming Li,et al.  A Review on Development Prospect of CZTS Based Thin Film Solar Cells , 2014 .

[17]  J. Bell,et al.  One-step synthesis of high quality kesterite Cu2ZnSnS4 nanocrystals – a hydrothermal approach , 2014, Beilstein journal of nanotechnology.

[18]  K. Chattopadhyay,et al.  Self-sacrificial template directed hydrothermal route to kesterite-Cu2ZnSnS4 microspheres and study of their photo response properties , 2014 .

[19]  Om Pal Singh,et al.  Growth of CZTS by co-sputtering and sulfurization for solar cell applications , 2013, Smart Materials, Nano-, and Micro- Smart Systems.

[20]  C. Tseng,et al.  Facile one-pot synthesis of Cu2ZnSnS4 quaternary nanoparticles using a microwave-assisted method , 2013 .

[21]  Yang Yang,et al.  Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. , 2013, Journal of the American Chemical Society.

[22]  Jianfeng Dong,et al.  Colloidal CZTS nanoparticles and films: Preparation and characterization , 2013 .

[23]  Jeong Yong Lee,et al.  Crystallization behaviour of co-sputtered Cu2ZnSnS4 precursor prepared by sequential sulfurization processes , 2013, Nanotechnology.

[24]  Farjana J. Sonia,et al.  Structural and optical properties of electrochemically grown highly crystalline Cu2ZnSnS4 (CZTS) thin films , 2013 .

[25]  Sang‐Kwon Lee,et al.  Rapid synthesis of sphere-like Cu2ZnSnS4 microparticles by microwave irradiation , 2012 .

[26]  S. Delbos Kësterite thin films for photovoltaics : a review , 2012 .

[27]  E. Aydil,et al.  Erratum: “Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments” [J. Appl. Phys. 111, 083707 (2012)] , 2012 .

[28]  E. Aydil,et al.  Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments , 2012 .

[29]  L. Romankiw,et al.  A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell , 2012 .

[30]  K. Ibrahim,et al.  Dependence of Copper Concentration on the Properties of Cu2ZnSnS4 Thin Films Prepared by Electrochemical Method , 2013, International Journal of Electrochemical Science.

[31]  Yuhan Lin,et al.  Alloyed (ZnS)x(Cu2SnS3)1-x and (CuInS2)x(Cu2SnS3)1-x Nanocrystals with Arbitrary Composition and Broad Tunable Band Gaps. , 2011 .

[32]  Yadong Li,et al.  Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. , 2011, Chemical communications.

[33]  C. Sanjeeviraja,et al.  Role of precursor solution in controlling the opto-electronic properties of spray pyrolysed Cu2ZnSnS4 thin films , 2011 .

[34]  Yuhan Lin,et al.  Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps. , 2011, Chemical communications.

[35]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[36]  Rakesh Agrawal,et al.  Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. , 2009, Journal of the American Chemical Society.

[37]  Georg Kresse,et al.  Cu 2 ZnSnS 4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study , 2009 .