Towards the best strength, ductility, and toughness combination: High entropy alloys are excellent, stainless steels are exceptional

[1]  T. Pardoen,et al.  Ductile fracture of high entropy alloys: From the design of an experimental campaign to the development of a micromechanics-based modeling framework , 2022, Engineering Fracture Mechanics.

[2]  H. Idrissi,et al.  Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloy , 2022, Acta Materialia.

[3]  T. Pardoen,et al.  Optimisation of the essential work of fracture method for characterization of the fracture resistance of metallic sheets , 2022, Engineering Fracture Mechanics.

[4]  P. Verleysen,et al.  Fracture mechanisms in flat and cylindrical tensile specimens of TRIP-TWIP β-metastable Ti-12Mo alloy , 2021, Acta Materialia.

[5]  F. Yuan,et al.  Mechanical property comparisons between CrCoNi medium-entropy alloy and 316 stainless steels , 2021, Journal of Materials Science & Technology.

[6]  Hyoung-Seop Kim,et al.  Stretch-flangeability of CoCrFeMnNi high-entropy alloy , 2021 .

[7]  T. Pardoen,et al.  Outstanding cracking resistance of fibrous dual phase steels , 2021 .

[8]  T. Pardoen,et al.  High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy , 2020, Nature Communications.

[9]  P. Jonsén,et al.  Identification of fracture toughness parameters to understand the fracture resistance of advanced high strength sheet steels , 2020 .

[10]  C. Tasan,et al.  High entropy alloys: A focused review of mechanical properties and deformation mechanisms , 2020, Acta Materialia.

[11]  F. Yuan,et al.  Deformation nanotwins suppress shear banding during impact test of CrCoNi medium-entropy alloy , 2020, Scripta Materialia.

[12]  Dierk Raabe,et al.  High-entropy alloys , 2019, Nature Reviews Materials.

[13]  P. Jonsén,et al.  Influence of microstructure on the fracture toughness of hot stamped boron steel , 2019, Materials Science and Engineering: A.

[14]  S. K. Ray,et al.  Fracture toughness evaluation of interstitial free steel sheet using Essential Work of Fracture (EWF) method , 2018, Engineering Fracture Mechanics.

[15]  Z. Luo,et al.  Revealing the Fracture Mechanism of Twinning‐Induced Plasticity Steels , 2018 .

[16]  M. Heilmaier,et al.  Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures , 2018, Journal of Materials Research.

[17]  P. Jonsén,et al.  Investigation on the Influence of Loading-Rate on Fracture Toughness of AHSS Grades , 2018 .

[18]  S. K. Ray,et al.  Ductile Tearing Resistance Indexing of Automotive Grade DP 590 Steel Sheets: EWF Testing Using DENT Specimens , 2018, Journal of Materials Engineering and Performance.

[19]  D. Casellas,et al.  Assessing edge cracking resistance in AHSS automotive parts by the Essential Work of Fracture methodology , 2017 .

[20]  Thomas K. Drube,et al.  A Reaffirmation of Fracture Toughness Requirements for ASME Section VIII Vessels for Service Temperatures Colder Than 77 K , 2017 .

[21]  G. Pharr,et al.  The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy , 2017 .

[22]  Michael C. Gao,et al.  Abnormal temperature dependence of impact toughness in AlxCoCrFeNi system high entropy alloys , 2017 .

[23]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[24]  Thomas Pardoen,et al.  Failure of metals I: Brittle and ductile fracture , 2016 .

[25]  Yong Zhang,et al.  The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures , 2016 .

[26]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[27]  Daniel Vavrik,et al.  Experimental evaluation of contour J integral and energy dissipated in the fracture process zone , 2014 .

[28]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[29]  L. Andena,et al.  The essential work of fracture in relation to J-integral , 2014 .

[30]  K. L. Nielsen,et al.  Cohesive traction–separation laws for tearing of ductile metal plates , 2012 .

[31]  Satish Kumar,et al.  LNG: An eco-friendly cryogenic fuel for sustainable development , 2011 .

[32]  P. Onck,et al.  Multiscale modeling of ductile failure in metallic alloys , 2010 .

[33]  A. Shahani,et al.  Experimental and numerical investigation of thickness effect on ductile fracture toughness of steel alloy sheets , 2010 .

[34]  I. Jain,et al.  Hydrogen the fuel for 21st century , 2009 .

[35]  T. Pardoen,et al.  The fracture toughness of TRIP-assisted multiphase steels , 2008 .

[36]  Joonmo Choung,et al.  Study on true stress correction from tensile tests , 2008 .

[37]  Y. Bréchet,et al.  Characterization of the high temperature tearing resistance using the essential work of fracture - Application to dual phase ferritic stainless steels , 2006 .

[38]  A. Atkins,et al.  Measuring toughness and the cohesive stress-displacement relationship by the essential work of fracture concept , 2005 .

[39]  Thomas Pardoen,et al.  Mode I fracture of sheet metal , 2004 .

[40]  Thomas Pardoen,et al.  Micromechanics-based model for trends in toughness of ductile metals , 2003 .

[41]  F. Delannay,et al.  Essential work of fracture compared to fracture mechanics—towards a thickness independent plane stress toughness , 2002 .

[42]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[43]  Thomas Pardoen,et al.  Thickness dependence of cracking resistance in thin aluminium plates , 1999 .

[44]  T. Siegmund,et al.  Prediction of the Work of Separation and Implications to Modeling , 1999 .

[45]  Christian Thaulow,et al.  Determining material true stress–strain curve from tensile specimens with rectangular cross-section , 1999 .

[46]  J. Yamamoto,et al.  Design-Relevant Mechanical Properties of 316-Type Steels for Superconducting Magnets , 1997 .

[47]  F. Delannay,et al.  Statistical procedure for improving the precision of the measurement of the essential work of fracture of thin sheets , 1997, International Journal of Fracture.

[48]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[49]  D. Read,et al.  Essential work of fracture (we) versus energy dissipation rate (Jc) in plane stress ductile fracture , 1986 .

[50]  Y. Mai,et al.  The essential work of plane stress ductile fracture of a strain-aged steel , 1979 .

[51]  A. Pineau,et al.  Temperature dependence of stacking fault energy in close-packed metals and alloys , 1978 .

[52]  B. Cotterell,et al.  The essential work of plane stress ductile fracture , 1977, International Journal of Fracture.

[53]  R. Tobler Low temperature effects on the fracture behaviour of a nickel base superalloy , 1976 .

[54]  K. B. Broberg,et al.  On stable crack growth , 1975 .

[55]  T. Ericsson The temperature and concentration dependence of the stacking fault energy in the Co-Ni system , 1966 .

[56]  T. DeSisto,et al.  LOW TEMPERATURE MECHANICAL PROPERTIES OF 300 SERIES STAINLESS STEEL AND TITANIUM. , 1961 .

[57]  R. Hill,et al.  On discontinuous plastic states, with special reference to localized necking in thin sheets , 1952 .

[58]  Y. Estrin,et al.  Twinning-induced plasticity (TWIP) steels , 2018 .

[59]  D. Casellas,et al.  Fracture Toughness to Understand Stretch-Flangeability and Edge Cracking Resistance in AHSS , 2016, Metallurgical and Materials Transactions A.

[60]  Giovanni Nicoletti,et al.  A technical and environmental comparison between hydrogen and some fossil fuels , 2015 .

[61]  A. Pineau,et al.  2.06 – Failure of Metals , 2007 .

[62]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[63]  R. Reed Low-Temperature Tensile Properties of Fe-Ni Alloys , 1998 .

[64]  J. Christian,et al.  Mechanical Properties of Titanium Alloys at Cryogenic Temperatures , 1995 .

[65]  J. Morris,et al.  An Iron-Nickel-Titanium Alloy with Outstanding Toughness at Cryogenic Temperature , 1995 .

[66]  J. Kaufman,et al.  Tensile Properties and Notch Toughness of Aluminum Alloys at -452°F in Liquid Helium , 1995 .

[67]  Y. Mai,et al.  Effect of specimen geometry on the essential work of plane stress ductile fracture , 1985 .

[68]  H. Nakajima,et al.  The Development of a Nitrogen-Strengthened High-Manganese Austenitic Stainless Steel for a Large Superconducting Magnet , 1984 .

[69]  H. McHenry The Properties of Austenitic Stainless Steel at Cryogenic Temperatures , 1983 .

[70]  H. Krauth,et al.  Toughness and Fatigue Properties of Austenitic Steels at Cryogenic Temperature and their Application in Complex Structures , 1983 .

[71]  H. Reed Martensitic Transformations in Fe-Cr-Ni Stainless Steels , 1983 .

[72]  H. Nakajima,et al.  Mechanical Properties of 18Mn-5Cr Austenitic Steel at Cryogenic Temperatures , 1983 .

[73]  R. Reed,et al.  Temperature Dependence of Yielding in Austenitic Stainless Steels , 1980 .

[74]  J. M. Wells,et al.  Cryogenic Fracture Toughness and Fatigue Crack-Growth Rate Properties of Inconel 706 Base Material and GAS Tungsten-ARC Weldments , 1980 .

[75]  D. Read,et al.  A Nitrogen-Strengthened Austenitic Stainless Steel for Cryogenic Magnet Structures , 1980 .

[76]  J. Savas The Fe-10Ni-1Mo-0.20C Steel as a Potential Alloy for Cryogenic Applications , 1980 .

[77]  A. Ishchenko,et al.  Mechanical Properties of Soviet and American Al-Mg Alloy Plates and Welds for LNG Systems , 1978 .

[78]  Bruce R. Somers,et al.  Fracture Toughness of Cryogenic Alloys , 1978 .

[79]  R. Tobler,et al.  FRACTURE MECHANICS PARAMETERS FOR AN IRON-13 % CHROMIUM-19 % MANGANESE STAINLESS STEEL AND ITS WELDS AT CRYOGENIC TEMPERATURES* , 1978 .

[80]  J. M. Wells,et al.  The Influence of Processing and Heat Treatment on the Cryogenic Fracture Mechanics Properties of Inconel 718 , 1978 .

[81]  K. Yushchenko Low-Temperature Weldable Steels and Alloys , 1978 .

[82]  D. A. Sarno,et al.  An Evaluation of Three Steels for Cryogenic Service , 1978 .

[83]  R. E. Schramm,et al.  NOTE ON THE FRACTURE PROPERTIES OF Fe-49Ni AT CRYOGENIC TEMPERATURES* , 1978 .

[84]  R. Kelsey,et al.  Mechanical Properties of U. S./USSR Al-Mg Plate and Welds for LNG Applications , 1978 .

[85]  S. Hwang,et al.  Fe-Mn Alloys for Cryogenic Use: A Brief Survey of Current Research , 1978 .

[86]  J. M. Wells,et al.  Evaluation of Weldments in Austenitic Stainless Steels for Cryogenic Applications , 1978 .

[87]  K. Broberg The Importance of Stable Crack Extension in Linear and Non-Linear Fracture Mechanics , 1974 .

[88]  J. Kaufman,et al.  Tensile Properties and Notch Toughness of Some 7XXX Alloys at —452°F , 1971 .

[89]  H. Eiselstein An Age-Hardenable, Low-Expansion Alloy for Cryogenic Service , 1967 .

[90]  J. Christian Mechanical Properties of Several Nickel-Base Alloys at Room and Cryogenic Temperatures , 1967 .

[91]  C. Goodzeit Evaluation of Stainless Steel Casting Alloys for Cryogenic Service in the 80-Inch Liquid-Hydrogen Bubble Chamber , 1965 .

[92]  W. F. Emmons,et al.  Cryogenic Tensile Properties of Selected Aerospace Materials , 1965 .

[93]  J. Watson,et al.  Mechanical Properties of Several 5000-Series Aluminum Alloys at Cryogenic Temperatures , 1962 .

[94]  J. Campbell,et al.  Tensile Behavior of Parent-Metal and Welded 5000-Series Aluminum Alloy Plate at Room and Cryogenic Temperatures , 1962 .

[95]  J. Watson,et al.  Properties of 7000 Series Aluminum Alloys at Cryogenic Temperatures , 1961 .

[96]  R. Reed,et al.  Mechanical Properties of Four Austenitic Stainless Steels at Temperatures Between 300° and 20°K , 1961 .

[97]  H. Long,et al.  The Low-Temperature Mechanical Properties of Some Selected Austenitic Manganese Steels , 1960 .

[98]  R. Reed,et al.  The Tensile and Impact Strength of Annealed and Welded 5086 Aluminum Down to 20°K , 1960 .

[99]  A. Everest The Behavior of High-Magnesium-Content Aluminum Alloys at Room and Liquid-Nitrogen Temperatures , 1960 .

[100]  R. H. Kropschot,et al.  Mechanical Properties of Some Engineering Materials between 20°K and 300°K , 1960 .

[101]  R. Reed,et al.  The Impact Testing of Various Alloys at Low Temperatures , 1960 .