Size Tunable Synthesis and Surface Chemistry of Metastable TiO2-Bronze Nanocrystals

The metastable titania phase, bronze, has great potential as photocatalyst or as anode material in Li-ion batteries. Here, we report the first synthesis of colloidally stable, size-tunable TiO2-bronze (TiO2–B) nanocrystals, via a hydrothermal process. By employing definitive screening design, the experimental parameters affecting the size and agglomeration of the nanocrystals are identified. The size is mostly determined by the reaction temperature, resulting in 3–8 nm NCs in the range of 130–180 °C. To avoid irreversible aggregation, short reaction times are desired, and in this respect, microwave heating proved essential due to its fast heating and cooling rates. The resulting nanocrystals are deaggregated and stabilized in polar solvents using either positive or negative surface charges. In nonpolar solvents, steric stabilization is provided by long chain amines and carboxylic acids. Furthermore, we study this peculiar postsynthetic surface modification through solution 1H NMR and elemental analysis. S...

[1]  Marek Kosmulski,et al.  The significance of the difference in the point of zero charge between rutile and anatase. , 2002, Advances in colloid and interface science.

[2]  Z. Hens,et al.  Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases. , 2014, Journal of the American Chemical Society.

[3]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[4]  Zhen Zhou,et al.  TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries. , 2015, Chemical communications.

[5]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[6]  K. Stevenson,et al.  Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2(B). , 2012, Langmuir : the ACS journal of surfaces and colloids.

[7]  Z. Hens,et al.  Carboxylic-Acid-passivated metal oxide nanocrystals: ligand exchange characteristics of a new binding motif. , 2015, Angewandte Chemie.

[8]  Hang Zhou,et al.  Synergistic effect of sodium ions and fluoride ions on synthesis of pure-phase TiO2(B) nanorings , 2017, Journal of Nanoparticle Research.

[9]  Yunhui Huang,et al.  Ionic-Liquid-Assisted Synthesis of Self-Assembled TiO2-B Nanosheets under Microwave Irradiation and Their Enhanced Lithium Storage Properties , 2013 .

[10]  P. Bruce,et al.  Nanotubes with the TiO2-B structure. , 2005, Chemical communications.

[11]  M. Süess,et al.  Assembly of BaTiO3 nanocrystals into macroscopic aerogel monoliths with high surface area. , 2014, Angewandte Chemie.

[12]  Hao Zhang,et al.  Direct optical lithography of functional inorganic nanomaterials , 2017, Science.

[13]  Claudia Grote,et al.  Comparative study of ligand binding during the postsynthetic stabilization of metal oxide nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[14]  M. Cima,et al.  Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[15]  Emily J. McLaurin,et al.  InP Nanocrystals with Color-Tunable Luminescence by Microwave-Assisted Ionic-Liquid Etching , 2017 .

[16]  D. Milliron,et al.  Ordering in Polymer Micelle-Directed Assemblies of Colloidal Nanocrystals. , 2015, Nano letters.

[17]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[18]  G. Henkelman,et al.  Lithium insertion in nanostructured TiO(2)(B) architectures. , 2013, Accounts of chemical research.

[19]  Christopher J. Nachtsheim,et al.  A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects , 2011 .

[20]  A. Cannavale,et al.  Ultrathin TiO₂(B) nanorods with superior lithium-ion storage performance. , 2014, ACS applied materials & interfaces.

[21]  J. M. Kikkawa,et al.  A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. , 2011, Journal of the American Chemical Society.

[22]  J. Warzywoda,et al.  Perpendicular edge oriented graphene foam supporting orthogonal TiO2(B) nanosheets as freestanding electrode for lithium ion battery , 2016 .

[23]  D. Bresser,et al.  Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries , 2015 .

[24]  P. Van Der Voort,et al.  Fast and tunable synthesis of ZrO2 nanocrystals: mechanistic insights into precursor dependence. , 2015, Inorganic chemistry.

[25]  D. Milliron,et al.  Colloidal Nanocrystal Frameworks , 2015, Advanced materials.

[26]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[27]  Vinodkumar Etacheri,et al.  Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. , 2014, ACS nano.

[28]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[29]  S. Mourdikoudis,et al.  Oleylamine in Nanoparticle Synthesis , 2013 .

[30]  Xun Wang,et al.  Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. , 2010, Chemical communications.

[31]  J. Robertson,et al.  Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO2(B) , 2016 .

[32]  Roberto Simonutti,et al.  Nb-Doped Colloidal TiO2 Nanocrystals with Tunable Infrared Absorption , 2013 .

[33]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[34]  M. Kakihana,et al.  One-step synthesis of TiO2(B) nanoparticles from a water-soluble titanium complex , 2007 .

[35]  Jing-Feng Wang,et al.  Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries , 2015, Journal of Materials Science.

[36]  Md. Kamal Hossain,et al.  First Synthesis of Highly Crystalline, Hexagonally Ordered, Uniformly Mesoporous TiO2–B and Its Optical and Photocatalytic Properties , 2015 .

[37]  Oleksandr Voznyy,et al.  10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. , 2016, Nano letters.

[38]  Antonio M. López,et al.  Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators , 2017 .

[39]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[40]  Z. Hens,et al.  Fast, microwave-assisted synthesis of monodisperse HfO2 nanoparticles , 2013, Journal of Nanoparticle Research.

[41]  P. Bruce,et al.  Nanostructured TiO2(B): the effect of size and shape on anode properties for Li-ion batteries , 2013 .

[42]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[43]  Davy Sinnaeve,et al.  Amino Acid-Based Stabilization of Oxide Nanocrystals in Polar Media: From Insight in Ligand Exchange to Solution ¹H NMR Probing of Short-Chained Adsorbates. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[44]  Yang Zhou,et al.  Reversible Exchange of L-Type and Bound-Ion-Pair X-Type Ligation on Cadmium Selenide Quantum Belts. , 2017, Journal of the American Chemical Society.

[45]  Luc Brohan,et al.  TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17 , 1980 .

[46]  Sean E. Doris,et al.  Mechanistic insight into the formation of cationic naked nanocrystals generated under equilibrium control. , 2014, Journal of the American Chemical Society.

[47]  M. Kanatzidis,et al.  Electron doping in bottom-up engineered thermoelectric nanomaterials through HCl-mediated ligand displacement. , 2015, Journal of the American Chemical Society.

[48]  Fengshan Bai,et al.  Constructing Definitive Screening Designs Using Conference Matrices , 2012 .

[49]  Wei Zhou,et al.  Ti3+ Self-Doped Blue TiO2(B) Single-Crystalline Nanorods for Efficient Solar-Driven Photocatalytic Performance. , 2016, ACS applied materials & interfaces.

[50]  Z. Hens,et al.  From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces. , 2016, Dalton transactions.

[51]  Baohua Li,et al.  Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO2-B and Anatase Dual-Phase Nanowires. , 2017, ACS applied materials & interfaces.

[52]  Raffaella Buonsanti,et al.  Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using Meerwein's salt. , 2012, Angewandte Chemie.

[53]  G. Cao,et al.  Enhanced light-conversion efficiency of titanium-dioxide dye-sensitized solar cells with the addition of indium-tin-oxide and fluorine-tin-oxide nanoparticles in electrode films , 2008 .

[54]  Masahiro Yoshimura,et al.  A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. , 2006, Angewandte Chemie.

[55]  Z. Hens,et al.  Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement. , 2016, Nature materials.

[56]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[57]  Tao Huang,et al.  Nano-TiO2(B) coated LiMn2O4 as cathode materials for lithium-ion batteries at elevated temperatures , 2015 .

[58]  P. Bruce,et al.  Diffusion in Confined Dimensions : Li+ Transport in Mixed Conducting TiO2-B Nanowires , 2009 .

[59]  L. Kavan,et al.  Novel Synthesis of the TiO2(B) Multilayer Templated Films , 2009 .

[60]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[61]  P. Voort,et al.  Stabilization of colloidal Ti, Zr, and Hf oxide nanocrystals by protonated tri-n-octylphosphine oxide (TOPO) and its decomposition products , 2017 .

[62]  P. Guardia,et al.  Tuning Branching in Ceria Nanocrystals , 2017 .

[63]  N. Anderson,et al.  Tight Binding of Carboxylate, Phosphonate, and Carbamate Anions to Stoichiometric CdSe Nanocrystals. , 2017, Journal of the American Chemical Society.

[64]  Zhongwei Chen,et al.  Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode–electrolyte interaction in high-power Li-ion batteries , 2016 .