An In Situ Grazing Incidence X‐Ray Scattering Study of Block Copolymer Thin Films During Solvent Vapor Annealing

In situ grazing-incidence small-angle X-ray scattering experiments on thin films of block copolymers during annealing in neutral solvent vapors are reported. By removing the solvent in a controlled manner, the period of the microphase separated morphology is found to increase with increasing block copolymer concentration in a power law manner with an exponent ∼ 2/3. By venting the systems at different rates during the solvent removal process, kinetically arresting the system, the period of the microphase separated morphology in the dried film can be varied.

[1]  M. Morris,et al.  Solvent Vapor Annealing of Block Polymer Thin Films , 2013 .

[2]  Eunhye Kim,et al.  Directed assembly of high molecular weight block copolymers: highly ordered line patterns of perpendicularly oriented lamellae with large periods. , 2013, ACS nano.

[3]  R. Grubbs,et al.  Self-assembly of symmetric brush diblock copolymers. , 2013, ACS nano.

[4]  Xiaodan Gu,et al.  High Aspect Ratio Sub‐15 nm Silicon Trenches From Block Copolymer Templates , 2012, Advanced materials.

[5]  Xiaodan Gu,et al.  High Density and Large Area Arrays of Silicon Oxide Pillars with Tunable Domain Size for Mask Etch Applications , 2012, Advanced materials.

[6]  Jonathan E. Seppala,et al.  Spatial and orientation control of cylindrical nanostructures in ABA triblock copolymer thin films by raster solvent vapor annealing. , 2012, ACS nano.

[7]  Alfredo Alexander-Katz,et al.  Morphology control in block copolymer films using mixed solvent vapors. , 2012, ACS nano.

[8]  Ruipeng Li,et al.  Stepwise Swelling of a Thin Film of Lamellae-Forming Poly(styrene-b-butadiene) in Cyclohexane Vapor , 2012 .

[9]  Julie N. L. Albert,et al.  Systematic study on the effect of solvent removal rate on the morphology of solvent vapor annealed ABA triblock copolymer thin films. , 2012, ACS nano.

[10]  Kim Y. Lee,et al.  Fabrication of Silicon Oxide Nanodots with an Areal Density Beyond 1 Teradots Inch−2 , 2011, Advanced materials.

[11]  Jae Won Jeong,et al.  Highly tunable self-assembled nanostructures from a poly(2-vinylpyridine-b-dimethylsiloxane) block copolymer. , 2011, Nano letters.

[12]  Kathryn L Beers,et al.  Gradient solvent vapor annealing of block copolymer thin films using a microfluidic mixing device. , 2011, Nano letters.

[13]  M. Hillmyer,et al.  Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. , 2010, ACS nano.

[14]  Xavier Andre,et al.  Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An In Situ GISAXS study. , 2010, Macromolecules.

[15]  Dorthe Posselt,et al.  Structural rearrangements in a lamellar diblock copolymer thin film during treatment with saturated solvent vapor. , 2010, Macromolecules.

[16]  Caroline A. Ross,et al.  Solvent‐Vapor‐Induced Tunability of Self‐Assembled Block Copolymer Patterns , 2009 .

[17]  Soojin Park,et al.  Macroscopic 10-Terabit–per–Square-Inch Arrays from Block Copolymers with Lateral Order , 2009, Science.

[18]  Thomas P. Russell,et al.  Controlling Orientation and Order in Block Copolymer Thin Films , 2008 .

[19]  Dorthe Posselt,et al.  Structural instabilities in lamellar diblock copolymer thin films during solvent vapor uptake. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  Erin M. Lennon,et al.  Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays , 2008, Science.

[21]  Joel K. W. Yang,et al.  Graphoepitaxy of Self-Assembled Block Copolymers on Two-Dimensional Periodic Patterned Templates , 2008, Science.

[22]  Ricardo Ruiz,et al.  Control of self-assembly of lithographically patternable block copolymer films. , 2008, ACS nano.

[23]  T. Russell,et al.  Influence of ionic complexes on phase behavior of polystyrene-b-poly(methyl methacrylate) copolymers , 2008 .

[24]  A. Knoll,et al.  Time evolution of surface relief structures in thin block copolymer films , 2007 .

[25]  Jillian M. Buriak,et al.  Assembly of aligned linear metallic patterns on silicon , 2007, Nature Nanotechnology.

[26]  Y. Jung,et al.  Orientation-controlled self-assembled nanolithography using a polystyrene-polydimethylsiloxane block copolymer. , 2007, Nano letters.

[27]  Kevin A. Cavicchi,et al.  Solvent Annealed Thin Films of Asymmetric Polyisoprene−Polylactide Diblock Copolymers , 2007 .

[28]  B. Ocko,et al.  Salt complexation in block copolymer thin films , 2006 .

[29]  Thomas P. Russell,et al.  Nanoporous Membranes with Ultrahigh Selectivity and Flux for the Filtration of Viruses , 2006 .

[30]  Thomas P. Russell,et al.  Solvent annealing thin films of poly (isoprene- b-lactide) , 2005 .

[31]  A. Knoll,et al.  Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid , 2004, Nature materials.

[32]  Ting Xu,et al.  Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation , 2004 .

[33]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[34]  T. Lodge,et al.  Phase behavior of block copolymers in a neutral solvent , 2003 .

[35]  Henry I. Smith,et al.  Fabrication of nanostructures with long-range order using block copolymer lithography , 2002 .

[36]  Zhiqun Lin,et al.  A Rapid Route to Arrays of Nanostructures in Thin Films , 2002 .

[37]  D. Smilgies,et al.  Characterization of polymer thin films with small‐angle X‐ray scattering under grazing incidence (GISAXS) , 2002 .

[38]  A. Knoll,et al.  Phase behavior in thin films of cylinder-forming block copolymers. , 2002, Physical review letters.

[39]  W. Russel,et al.  Scaling of Domain Spacing in Concentrated Solutions of Block Copolymers in Selective Solvents , 2002 .

[40]  E. Kramer,et al.  Graphoepitaxy of Spherical Domain Block Copolymer Films , 2001 .

[41]  Joy Cheng,et al.  Formation of a Cobalt Magnetic Dot Array via Block Copolymer Lithography , 2001 .

[42]  T. Hashimoto,et al.  Order–disorder transition of polystyrene-block-polyisoprene Part II. Characteristic length as a function of polymer concentration, molecular weight, copolymer composition, and χ parameter , 2001 .

[43]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[44]  C. Stafford,et al.  Expansion of Polystyrene Using Supercritical Carbon Dioxide: Effects of Molecular Weight, Polydispersity, and Low Molecular Weight Components , 1999 .

[45]  Matthew Libera,et al.  Morphological Development in Solvent-Cast Polystyrene−Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films , 1998 .

[46]  Christopher Harrison,et al.  Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter , 1997 .

[47]  T. Hashimoto,et al.  Order‐disorder transition of polystyrene‐block‐polyisoprene. I. Thermal concentration fluctuations in single‐phase melts and solutions and determination of χ as a function of molecular weight and composition , 1996 .

[48]  F. Bates,et al.  Failure of the dilution approximation in block copolymer solutions , 1995 .

[49]  K. Shull Mean-field theory of block copolymers: bulk melts, surfaces, and thin films , 1992 .

[50]  H. Kawai,et al.  Ordered structure in block polymer solutions. 3. Concentration dependence of microdomains in nonselective solvents , 1983 .

[51]  E. Helfand,et al.  Theory of the Interface between Immiscible Polymers. II , 1972 .

[52]  T. G. Fox,et al.  Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers , 1955 .

[53]  Edwin L. Thomas,et al.  Solvent swelling of roll-cast triblock copolymer films , 1998 .

[54]  E. Kramer,et al.  Determining the temperature-dependent Flory interaction parameter for strongly immiscible polymers from block copolymer segregation measurements , 1994 .

[55]  M. Kunz,et al.  Evolution of Ordering in Thin Films of Symmetric Diblock Copolymers , 1994 .