Large-Scale Gradients in Human Cortical Organization

[1]  B. T. Thomas Yeo,et al.  Topographic organization of the cerebral cortex and brain cartography , 2017, NeuroImage.

[2]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.

[3]  John D. Murray,et al.  Hierarchy of transcriptomic specialization across human cortex captured by myelin map topography , 2017, bioRxiv.

[4]  Hao-Ting Wang,et al.  Isolated from input: Transmodal cortex in the default mode network supports perceptually-decoupled and conceptually-guided cognition , 2017, bioRxiv.

[5]  Fenna M. Krienen,et al.  Gradients in cytoarchitectural landscapes of the isocortex: Diprotodont marsupials in comparison to eutherian mammals , 2017, The Journal of comparative neurology.

[6]  Rolf Gruetter,et al.  Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2 * and magnetic susceptibility , 2017, NeuroImage.

[7]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[8]  Kenneth A. Norman,et al.  Discovering Event Structure in Continuous Narrative Perception and Memory , 2016, Neuron.

[9]  Peter B. Jones,et al.  373. Adolescence is Associated with Genomically Patterned Consolidation of the Hubs of the Human Brain Connectome , 2016, Biological Psychiatry.

[10]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[11]  Peter B. Jones,et al.  Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Polina Golland,et al.  Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability. , 2016, Cerebral cortex.

[13]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[14]  Thomas L. Griffiths,et al.  Supplementary Information for Natural Speech Reveals the Semantic Maps That Tile Human Cerebral Cortex , 2022 .

[15]  L. F. Barrett,et al.  Redefining the Role of Limbic Areas in Cortical Processing , 2016, Trends in Cognitive Sciences.

[16]  Selen Atasoy,et al.  Human brain networks function in connectome-specific harmonic waves , 2016, Nature Communications.

[17]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[18]  Fenna M. Krienen,et al.  Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain , 2016, Proceedings of the National Academy of Sciences.

[19]  R. Nieuwenhuys,et al.  Towards a New Neuromorphology , 2015, Springer International Publishing.

[20]  D. Poeppel,et al.  Cortical Tracking of Hierarchical Linguistic Structures in Connected Speech , 2015, Nature Neuroscience.

[21]  H T Siegelmann,et al.  The global landscape of cognition: hierarchical aggregation as an organizational principle of human cortical networks and functions , 2015, Scientific Reports.

[22]  K. Amunts,et al.  Architectonic Mapping of the Human Brain beyond Brodmann , 2015, Neuron.

[23]  Christine L. Tardif,et al.  Assessing intracortical myelin in the living human brain using myelinated cortical thickness , 2015, Front. Neurosci..

[24]  A. Lutti,et al.  Advances in MRI-based computational neuroanatomy: from morphometry to in-vivo histology. , 2015, Current opinion in neurology.

[25]  P. B. Cipolloni,et al.  Cerebral Cortex: Architecture, Connections, and the Dual Origin Concept , 2015 .

[26]  Nicholas Ayache,et al.  Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps , 2015, IPMI.

[27]  M. Rietschel,et al.  Correlated gene expression supports synchronous activity in brain networks , 2015, Science.

[28]  C. Honey,et al.  Hierarchical process memory: memory as an integral component of information processing , 2015, Trends in Cognitive Sciences.

[29]  Pierre-Louis Bazin,et al.  Multi-contrast multi-scale surface registration for improved alignment of cortical areas , 2015, NeuroImage.

[30]  Konrad Wagstyl,et al.  Cortical thickness gradients in structural hierarchies , 2015, NeuroImage.

[31]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[32]  Marcel A. J. van Gerven,et al.  Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream , 2014, The Journal of Neuroscience.

[33]  Barbara L Finlay,et al.  Systematic, cross-cortex variation in neuron numbers in rodents and primates. , 2015, Cerebral cortex.

[34]  Barbara L Finlay,et al.  Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism , 2014, Proceedings of the National Academy of Sciences.

[35]  H. F. Song,et al.  Spatial embedding of structural similarity in the cerebral cortex , 2014, Proceedings of the National Academy of Sciences.

[36]  David J. Freedman,et al.  A hierarchy of intrinsic timescales across primate cortex , 2014, Nature Neuroscience.

[37]  B. Finlay,et al.  Evo-Devo and the Primate Isocortex: The Central Organizing Role of Intrinsic Gradients of Neurogenesis , 2014, Brain, Behavior and Evolution.

[38]  Polina Golland,et al.  Decoupling function and anatomy in atlases of functional connectivity patterns: Language mapping in tumor patients , 2014, NeuroImage.

[39]  C. Hilgetag,et al.  A predictive model of the cat cortical connectome based on cytoarchitecture and distance , 2014, Brain Structure and Function.

[40]  Juliane Dinse,et al.  A computational framework for ultra-high resolution cortical segmentation at 7Tesla , 2014, NeuroImage.

[41]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[42]  C. Honey,et al.  A place for time: the spatiotemporal structure of neural dynamics during natural audition. , 2013, Journal of neurophysiology.

[43]  Timothy E. J. Behrens,et al.  The topographic connectome , 2013, Current Opinion in Neurobiology.

[44]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[45]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[46]  Rainer Goebel,et al.  BrainVoyager — Past, present, future , 2012, NeuroImage.

[47]  Keith A. Johnson,et al.  Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain , 2012, The Journal of Neuroscience.

[48]  Barbara L. Finlay,et al.  Systematic, balancing gradients in neuron density and number across the primate isocortex , 2012, Front. Neuroanat..

[49]  C. Honey,et al.  Topographic Mapping of a Hierarchy of Temporal Receptive Windows Using a Narrated Story , 2011, The Journal of Neuroscience.

[50]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[51]  John W. Harwell,et al.  Similar patterns of cortical expansion during human development and evolution , 2010, Proceedings of the National Academy of Sciences.

[52]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[53]  D. Geschwind,et al.  Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis , 2009, Neuron.

[54]  D. Heeger,et al.  A Hierarchy of Temporal Receptive Windows in Human Cortex , 2008, The Journal of Neuroscience.

[55]  P. Rakic Progress: Neurogenesis in adult primate neocortex: an evaluation of the evidence , 2002, Nature Reviews Neuroscience.

[56]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[57]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[58]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[59]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[60]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[61]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[62]  F. Sanides Die Architektonik des Menschlichen Stirnhirns , 1962 .