Bridging phases at the morphotropic boundaries of lead oxide solid solutions

Ceramic solid solutions of PbZr1− x T x O3 (PZT) with compositions x≃ 0.50 are well-known for their extraordinarily large piezoelectric responses. The latter are highly anisotropic, and it was recently shown that, for the rhombohedral compositions (x ≲ 0.5), the piezoelectric coefficients were largest away from the polar direction, contrary to common belief. Shortly afterwards a low-symmetry monoclinic phase was observed by synchrotron X-ray diffraction at around x = 0.50. Similar behavior and features are also present in a number of related lead-based strongly-piezoelectric single crystals, such as Pb(Mg1/3Nb2/3)1− x Ti x O3, Pb(Zn1/3Nb2/3)1− x Ti x O3, and Pb(Sn1/2Nb1/2)1− x Ti x O3, with piezoelectric coefficients of about 2500 pm V−1, the highest values recorded to date. Recent experimental and theoretical work has greatly improved our understanding of these technologically important systems, but there are still some open questions. In this review, we summarize the most recent progress in the field.

[1]  G. Shirane,et al.  Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 2001, cond-mat/0107276.

[2]  Dwight D. Viehland,et al.  Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3–PbTiO3 crystals , 2000 .

[3]  D. Viehland,et al.  Piezoelectric instability in 〈011〉-oriented Pb(B1/3IB2/3II)O3–PbTiO3 crystals , 2001 .

[4]  G. Shirane,et al.  Universal phase diagram for high-piezoelectric perovskite systems , 2001, cond-mat/0102457.

[5]  F. Fauth,et al.  A neutron diffraction investigation into the rhombohedral phases of the perovskite series , 1998 .

[6]  Matthew R. Suchomel,et al.  Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations , 2005 .

[7]  D. Viehland,et al.  Temperature stability of the piezoelectric and elastic response of dc biased [001] and [110] oriented Pb(Zn1∕3Nb2∕3)O3‐PbTiO3 single crystals , 2004 .

[8]  N. Setter,et al.  Piezoelectric anisotropy - phase transition relations in perovskite single crystals , 2003, 14th IEEE International Symposium on Applications of Ferroelectrics, 2004. ISAF-04. 2004.

[9]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[10]  G. Shirane,et al.  Phase Transitions in Solid Solutions of PbZrO 3 and PbTiO 3 (II) X-ray Study , 1952 .

[11]  C. Bousquet,et al.  Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate , 2004 .

[12]  D. Durand,et al.  Order and disorder in the relaxor ferroelectric perovskite ? (PSN): comparison with simple perovskites ? and ? , 1997 .

[13]  Ragini,et al.  Antiferrodistortive phase transition in Pb ( Ti 0.48 Zr 0.52 ) O 3 : A powder neutron diffraction study , 2002 .

[14]  L. E. Cross,et al.  Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite : The structure of PbZr0.52Ti0.48O3 , 2000 .

[15]  W. J. Merz Piezoelectric Ceramics , 1972, Nature.

[16]  Jung‐Kun Lee,et al.  Local structure study of the off-center displacement of Ti and Zr across the morphotropic phase boundary of Pb Zr 1 − x Ti x O 3 ( x = 0.40 , 0.47 , 0.49 , 0.55 ) , 2004 .

[17]  L. Bellaiche,et al.  Cationic-competition-induced monoclinic phase in high piezoelectric (PbSc 1/2 Nb 1/2 O 3 ) 1-x -(PbTiO 3 ) x compounds , 2003 .

[18]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[19]  Ragini,et al.  Room temperature structure of Pb(ZrxTi1−xO3) around the morphotropic phase boundary region: A Rietveld study , 2002 .

[20]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[21]  D. Viehland,et al.  Investigation of polarization switching in (001)c, (110)c, and (111)c oriented Pb(Zn1/3Nb2/3)O3–4.5%PbTiO3 crystals , 2004 .

[22]  Jb Li,et al.  Effect of Ti on the Stability of Phases in the (1 − x)Pb(Mg 1/3 Nb 2/3 )O 3 -xPbTiO 3 Solid Solution , 2004 .

[23]  Ilya Grinberg,et al.  Relationship between local structure and phase transitions of a disordered solid solution , 2002, Nature.

[24]  M. Thi,et al.  Electric-field-induced orthorhombic phase in Pb[(Zn1∕3Nb2∕3)0.955Ti0.045]O3 single crystals , 2005 .

[25]  H. Yamamura,et al.  A compositional fluctuation and properties of Pb(Zr, Ti)O3 , 1977 .

[26]  D. Viehland,et al.  Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. , 2003, Physical review letters.

[27]  R. Clarke,et al.  Powder profile refinement of lead zirconate titanate at several temperatures. I. PbZr0.9Ti0.1O3 , 1978 .

[28]  I. Reaney,et al.  Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution , 2005 .

[29]  Y. Ishibashi,et al.  A Theory of Morphotropic Phase Boundary in Solid-Solution Systems of Perovskite-Type Oxide Ferroelectrics , 1998 .

[30]  D. Viehland,et al.  Local atomic structure of PZT and PLZT studied by pulsed neutron scattering , 1996 .

[31]  Ragini,et al.  Comparison of the Cc and R3c space groups for the superlattice phase of Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} , 2005 .

[32]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[33]  R. Uecker,et al.  Growth and correlation between composition and structure of (1−x)Pb(Zn1/3Nb2/3)O3−xPbTiO3 crystals near the morphotropic phase boundary , 2003 .

[34]  L. Bellaiche,et al.  Morphotropic phase boundary of heterovalent perovskite solid solutions : Experimental and theoretical investigation of PbSc1/2Nb1/2O3-PbTiO3 , 2005 .

[35]  N. Setter,et al.  Crystal orientation dependence of the piezoelectric d33 coefficient in tetragonal BaTiO3 as a function of temperature , 2002 .

[36]  J. Eiras,et al.  Infrared studies of the monoclinic-tetragonal phase transition in Pb(Zr,Ti)O3 ceramics , 2003 .

[37]  J. C. Hicks,et al.  X-ray diffraction and phenomenological studies of the engineered monoclinic crystal domains in single crystal relaxor ferroelectrics , 2000 .

[38]  G. Shirane,et al.  Crystal Structure of Pb(Zr-Ti)O3 , 1952 .

[39]  Huiqian Luo,et al.  Ultrahigh piezoelectric response perpendicular to special cleavage plane in BaTiO3 single crystals , 2005 .

[40]  M. Kakihana,et al.  High resolution neutron powder diffraction study of the microstrain contribution in Pb(ZrxTi1−x)O3 ceramics , 2004 .

[41]  V. Topolov Unique three-phase states in (1−x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 single crystals , 2004 .

[42]  C. Tai,et al.  Influence of short-range and long-range order on the evolution of the morphotropic phase boundary in Pb Zr[sub 1−x]Ti[sub x] O₃ , 2004 .

[43]  D. Viehland,et al.  Kinetics of polarization reversal in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3: Heterogeneous nucleation in the vicinity of quenched random fields , 2001 .

[44]  Zhigang Wu,et al.  First-principles calculations of piezoelectricity and polarization rotation inPb(Zr0.5Ti0.5)O3 , 2003 .

[45]  M. Kakihana,et al.  Phase transitions of Pb(ZrxTi1-x)O3 ceramics , 2002 .

[46]  V. Isupov Comments on the paper “X-ray study of the PZT solid solutions near the morphotropic phase transition” , 1975 .

[47]  J. Filho,et al.  Raman study of morphotropic phase boundary in PbZr 1 − x Ti x O 3 at low temperatures , 2000, cond-mat/0008440.

[48]  N. Setter,et al.  Large enhancement of the piezoelectric response in perovskite crystals by electric bias field antiparallel to polarization , 2004 .

[49]  Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. , 2005, Physical review letters.

[50]  Cross,et al.  Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution. , 1993, Physical review. B, Condensed matter.

[51]  Ragini,et al.  Antiferrodistortive phase transition in Pb(Ti 0.48 Zr 0.52 )O 3 : space group of the lowest temperature monoclinic phase , 2002 .

[52]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[53]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[54]  M. Fernández‐Díaz,et al.  Anharmonicity and disorder in simple and complex perovskites: a high energy synchrotron and hot neutron diffraction study , 2000 .

[55]  K. Uchino,et al.  Crystal orientation dependence of piezoelectric properties of lead zirconate titanate near the morphotropic phase boundary , 1998 .

[56]  Z. Ye,et al.  Coexistence of morphotropic phases in(1−x)Pb(Mg1∕3Nb2∕3)O3−xPbTiO3solid solutions , 2004 .

[57]  A. Singh,et al.  Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A Rietveld study , 2002, cond-mat/0210108.

[58]  R. Eichel,et al.  Exploring the morphotropic phase boundary in copper(II)-modified Pb[Zr0.54Ti0.46]O3 ferroelectrics , 2005 .

[59]  M. Hoffmann,et al.  Analysis of intrinsic lattice deformation in PZT-ceramics of different compositions , 2001 .

[60]  B. Fultz,et al.  Metastable and transient states of chemical ordering in Fe-V nanocrystalline alloys , 2001 .

[61]  W. G. Marshall,et al.  Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr 0.52 Ti 0.48 O 3 , 2005 .

[62]  Structural phase transformation and phase boundary∕stability studies of field-cooled Pb(Mg1∕3Nb2∕3O3)–32%PbTiO3 crystals , 2004, cond-mat/0410740.

[63]  S. Trolier-McKinstry,et al.  Influence of electrical cycling on polarization reversal processes in Pb(Zn1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals as a function of orientation , 2004 .

[64]  A. Singh,et al.  Structure and the location of the morphotropic phase boundary region in (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 , 2001 .

[65]  Haiqing Xu,et al.  Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition , 2001 .

[66]  Brahim Dkhil,et al.  Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds , 2002 .

[67]  F. Bai,et al.  Domain engineered states over various length scales in (001)-oriented Pb(Mg1∕3Nb2∕3)O3-x%PbTiO3 crystals: Electrical history dependence of hierarchal domains , 2005 .

[68]  S. Mishra,et al.  Effect of phase coexistence at morphotropic phase boundary on the properties of Pb(ZrxTi1−x)O3 ceramics , 1996 .

[69]  Matthew J. Davis,et al.  Electric-field-induced orthorhombic to rhombohedral phase transition in [111]C-oriented 0.92Pb(Zn1∕3Nb2∕3)O3−0.08PbTiO3 , 2005 .

[70]  D. Vanderbilt,et al.  Electric-field induced polarization paths in P b ( Z r 1 − x Ti x ) O 3 alloys , 2001, cond-mat/0104335.

[71]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[72]  E. Sawaguchi Ferroelectricity versus Antiferroelectricity in the Solid Solutions of PbZrO3 and PbTiO3 , 1953 .

[73]  Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3 , 2000, cond-mat/0006152.

[74]  P. Bouvier,et al.  High-pressure phases in highly piezoelectric PbZr0.52Ti0.48O3 , 2003, cond-mat/0309705.

[75]  Andrew G. Glen,et al.  APPL , 2001 .

[76]  G. Shirane,et al.  New features of the morphotropic phase boundary in the Pb(Zr1−xTix)O3 system , 1999, cond-mat/9907286.

[77]  A. Rappe,et al.  Development of a bond-valence molecular-dynamics model for complex oxides , 2005 .

[78]  李幼升,et al.  Ph , 1989 .

[79]  N. Setter,et al.  Enhancement of the piezoelectric response of tetragonal perovskite single crystals by uniaxial stress applied along the polar axis: A free-energy approach , 2005 .

[80]  Matthew J. Davis,et al.  Monodomain versus polydomain piezoelectric response of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals along nonpolar directions , 2003 .

[81]  V. Topolov,et al.  A new monoclinic phase and features of stress relief in PbZr1-xTixO3 solid solutions , 2001 .

[82]  E. Kisi,et al.  The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent? , 2003 .

[83]  M. Thi,et al.  Origin of the Giant Piezoelectric Properties in the [001] Domain Engineered Relaxor Single Crystals , 2003 .

[84]  V. Shuvaeva,et al.  Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3–PbTiO3 , 2005 .

[85]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[86]  Ragini,et al.  Evidence for another low-temperature phase transition in tetragonal Pb(Zr x Ti 1-x )O 3 (x=0.515,0.520) , 2001 .

[87]  Shirane Gen,et al.  Phase Transitions in Solid Solutions of PbZrO3 and PbTiO3 (I) Small Concentrations of PbTiO3 , 1952 .

[88]  M. Kakihana,et al.  Composition variation and the monoclinic phase within Pb(ZrxTi1-x)O3 ceramics , 2003 .

[89]  B. Noheda Structure and high-piezoelectricity in lead oxide solid solutions , 2002 .