A new method for implementing moment functions in a CMOS retina

We present in this paper a new method for implementing geometric moment functions in a CMOS retina. The principle is based on the similarity between geometric moment equations and the measurement of the correlation value between an image to analyze and a range of grey levels. The latter is approximated by a binary image called mask using a dithering algorithm in order to reduce hardware implementation cost. The correlation product between the mask and the image under analysis gives an approximated value of the geometric moment with an error less than 1% of the exact value. Finally, the results obtained by our approach have been applied to an object localization application and the localization error due to the approximated moment values reported.

[1]  R. Mukundan,et al.  Moment Functions in Image Analysis: Theory and Applications , 1998 .

[2]  G. Cathebras,et al.  A block matching approach for movement estimation in a CMOS retina: principle and results , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[3]  Jan P. Allebach,et al.  Model-based digital halftoning , 2003, IEEE Signal Process. Mag..

[4]  Piotr Dudek,et al.  An analogue SIMD focal-plane processor array , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[5]  Ralph Etienne-Cummings,et al.  VLSI Implementation of Motion Centroid Localization for Autonomous Navigation , 1998, NIPS.

[6]  Stephen P. DeWeerth,et al.  Analog VLSI circuits for stimulus localization and centroid computation , 1992, International Journal of Computer Vision.

[7]  Olivier Aubreton,et al.  Retina for pattern matching in standard 0.6-µm complementary metal oxide semiconductor technology , 2004, J. Electronic Imaging.

[8]  Misha Mahowald,et al.  A silicon model of early visual processing , 1993, Neural Networks.

[9]  Tadashi Shibata,et al.  A real-time center-of-mass tracker circuit implemented by neuron MOS technology , 1998 .

[10]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[11]  Olivier Aubreton,et al.  100-×100- pixel CMOS retina for real-time binary pattern matching , 2002 .

[12]  Yang Ni,et al.  Precise FPN compensation circuit for CMOS APS , 2002 .

[13]  Berthold K. P. Horn,et al.  An object position and orientation IC with embedded imager , 1991 .

[14]  Florence Tupin Reconnaissance des formes et analyse de scenes en imagerie radar a ouverture synthetique , 1997 .

[15]  F. Heitger,et al.  A 100×100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002, IEEE J. Solid State Circuits.

[16]  Massimo Barbaro,et al.  A 100/spl times/100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding , 2002 .

[17]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[18]  Francis Devos,et al.  A programmable artificial retina , 1993 .

[19]  Thierry M. Bernard,et al.  Second generation programmable artificial retina , 1999, Twelfth Annual IEEE International ASIC/SOC Conference (Cat. No.99TH8454).