Accumulated winter chill is decreasing in the fruit growing regions of California

[1]  M. Hutchinson,et al.  The development of 1901–2000 historical monthly climate models for Canada and the United States , 2006 .

[2]  K. Gallo,et al.  Methodology and Results of Calculating Central California Surface Temperature Trends: Evidence of Human-Induced Climate Change? , 2006 .

[3]  B. Santer,et al.  Climate scenarios for California , 2006 .

[4]  J. Porter,et al.  Crop responses to climatic variation , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  K. Lindsay,et al.  Evolution of carbon sinks in a changing climate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Philip B. Duffy,et al.  Uncertainty in projections of streamflow changes due to climate change in California , 2005 .

[7]  S. Schneider,et al.  Emissions pathways, climate change, and impacts on California. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Qi Hu,et al.  Changes in agro-meteorological indicators in the contiguous United States: 1951–2000 , 2004 .

[9]  S. Jeffrey Underwood,et al.  A Multiple-Case Analysis of Nocturnal Radiation-Fog Development in the Central Valley of California Utilizing the GOES Nighttime Fog Product , 2004 .

[10]  Antje Müller,et al.  Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000 , 2004 .

[11]  Richard N. Palmer,et al.  Potential Implications of PCM Climate Change Scenarios for Sacramento–San Joaquin River Basin Hydrology and Water Resources , 2004 .

[12]  M. Wu,et al.  Principles of environmental physics , 2004, Plant Growth Regulation.

[13]  P. Martínez-Gómez,et al.  Chilling and heat requirements of almond cultivars for flowering , 2003 .

[14]  R. Cesar Izaurralde,et al.  Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States: Part II. Regional agricultural production in 2030 and 2095 , 2003 .

[15]  P. Cox,et al.  How positive is the feedback between climate change and the carbon cycle? , 2003 .

[16]  Arun Kumar,et al.  Long‐range experimental hydrologic forecasting for the eastern United States , 2002 .

[17]  L. Sloan,et al.  Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region , 2002 .

[18]  Dennis P. Lettenmaier,et al.  Long range experimental hydrologic forecasting for the eastern U.S. , 2002 .

[19]  Ramakrishna R. Nemani,et al.  Asymmetric warming over coastal California and its impact on the premium wine industry , 2001 .

[20]  M. Dettinger,et al.  Changes in the Onset of Spring in the Western United States , 2001 .

[21]  R. Snyder,et al.  Determining degree-day thresholds from field observations , 1999 .

[22]  Pete Smith,et al.  Climate Change and the Global Harvest , 1998 .

[23]  Daniel Hillel,et al.  Climate change and the global harvest , 1998 .

[24]  P. W. Suckling,et al.  FOG CLIMATOLOGY OF THE SACRAMENTO URBAN AREA , 1988 .

[25]  K. McNaughton,et al.  A mixed-layer model for regional evaporation , 1986 .

[26]  K. Rattigan,et al.  Relationship between temperature and flowering in almond , 1986 .

[27]  R. Aron Availability of chilling temperatures in California , 1983 .

[28]  R. N. Swanson,et al.  High-Inversion Fog Episodes in Central California , 1981 .

[29]  R. Aron A Method for Estimating the Number of Hours Below a Selected Temperature Threshold , 1975 .

[30]  D. R. Walker,et al.  A Model for Estimating the Completion of Rest for ‘Redhaven’ and ‘Elberta’ Peach Trees1 , 1974, HortScience.

[31]  R. M. Samish Dormancy in Woody Plants , 1954 .