Finite volume L∞-stability for hyperbolic scalar problems

A new formalism and tools are proposed to characterize high-order reconstructions in the finite volume method context. We introduce the notion of admissible reconstruction and investigate the maximum principle and positivity preserving properties for scalar hyperbolic problem using the new formalism. We show that the traditional limiting strategies cast in out formalism and provide new proves of the L stability.

[1]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[2]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[3]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[4]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[5]  Matthew E. Hubbard,et al.  Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .

[6]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[7]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[8]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[9]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[10]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[11]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[12]  S. Spekreijse Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws , 1986 .

[13]  Chongam Kim,et al.  Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids , 2005, J. Comput. Phys..

[14]  A. Jameson Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows , 1993 .

[15]  Stéphane Clain,et al.  Monoslope and multislope MUSCL methods for unstructured meshes , 2010, J. Comput. Phys..

[16]  Stéphane Clain,et al.  L∞ stability of the MUSCL methods , 2010, Numerische Mathematik.

[17]  浅倉 史興,et al.  書評 C.Dafermos: Hyperbolic Conservation Laws in Continuum Physics , 2003 .

[18]  Jean-Marc Moschetta,et al.  Regular Article: Positivity of Flux Vector Splitting Schemes , 1999 .

[19]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[20]  Philip L. Roe,et al.  Robust Euler codes , 1997 .

[21]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .