Uniqueness of results for multiple correlations of periodic functions
暂无分享,去创建一个
[1] C W Tyler,et al. Phase discrimination of compound gratings: generalized autocorrelation analysis. , 1986, Journal of the Optical Society of America. A, Optics and image science.
[2] C. Haniff. Least-squares Fourier phase estimation from the modulo 2π bispectrum phase , 1991 .
[3] Georgios B. Giannakis,et al. Translation, rotation and scaling invariant object and texture classification using polyspectra , 1990 .
[4] Georgios B. Giannakis,et al. Signal reconstruction from multiple correlations: frequency- and time-domain approaches , 1989 .
[5] S.M. Kay,et al. Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.
[6] A W Lohmann,et al. Phase and amplitude recovery from bispectra. , 1984, Applied optics.
[7] Murray Rosenblatt,et al. Estimation and deconvolution when the transfer function has zeros , 1988 .
[8] M. Teague. Image analysis via the general theory of moments , 1980 .
[9] Brian M. Sadler,et al. Shift- and rotation-invariant object reconstruction using the bispectrum , 1992 .
[10] John I. Yellott,et al. Uniqueness properties of higher-order autocorrelation functions , 1992 .
[11] A. Lohmann,et al. Triple correlations , 1984, Proceedings of the IEEE.
[12] Jerry M. Mendel,et al. Cumulant-based approach to harmonic retrieval and related problems , 1991, IEEE Trans. Signal Process..
[13] D. Brillinger. THE COMPARISON OF LEAST SQUARES AND THIRD‐ORDER PERIODOGRAM PROCEDURES IN THE ESTIMATION OF BIFREQUENCY , 1980 .
[15] Demetri Psaltis,et al. Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.