Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries

Lithium/sodium metal anodes (MAs) have been investigated for the next-generation high-energy density batteries due to their high theoretical capacity and low redox voltage. However, the high reactivity and infinite volume expansion of the lithium/sodium metal induce dendrite growth and formation of an unstable solid electrolyte interface (SEI), leading to serious side reactions, low coulombic efficiency (CE), electrode degradation and even severe safety problems, dragging the lithium/sodium MA out of practical applications. Numerous strategies are explored to construct stable SEI layers and inhibit the dendrite issue. Carbon shell structures have attracted increasing attention, and they have been developed to host the Li/Na metal due to electrochemical stability, high ionic and electrical conductivity, lightweight, easy modification, high Young's module and reinforced stable SEI films. In this review, according to the main function of the carbon shell, it is divided into three categories: carbon shell as the protective layer, nucleation layer and the scaffold of the three-dimensional (3D) host. We summarize the recent advances of various carbon shells in terms of functions, structures, merits and challenges in the application for lithium/sodium MAs. It is expected that carbon shell structures can provide great opportunities for high-energy density lithium/sodium metal batteries.

[1]  T. He,et al.  High-Capacity, Dendrite-Free, and Ultrahigh-Rate Lithium-Metal Anodes Based on Monodisperse N-Doped Hollow Carbon Nanospheres. , 2020, Small.

[2]  Guoxiu Wang,et al.  High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode , 2020, Nature Communications.

[3]  Tingting Xu,et al.  3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode , 2020 .

[4]  Zhian Zhang,et al.  Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries , 2020 .

[5]  Jun Lu,et al.  Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. , 2020, Chemical Society reviews.

[6]  Bing Sun,et al.  Dendrite-free Sodium Metal Batteries Enabled by the Release of Contact Strain on Flexible and Sodiophilic Matrix. , 2020, Nano letters.

[7]  Tingting Xu,et al.  Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework , 2020, Ionics.

[8]  Xiaobo Ji,et al.  Carbon materials for high-performance lithium-ion capacitor , 2020, Current Opinion in Electrochemistry.

[9]  Baohua Li,et al.  Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases , 2020 .

[10]  Fengxiang Zhang,et al.  “Room-like” TiO2 Array as a Sulfur Host for Lithium-Sulfur Batteries: Combining Advantages of Array and Closed Structures , 2020 .

[11]  Yanwen Ma,et al.  Advanced Current Collectors for Alkali Metal Anodes , 2020, Chemical Research in Chinese Universities.

[12]  S. Dou,et al.  Core-Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes. , 2020, Nano letters.

[13]  Yongsong Luo,et al.  Dendrite-free lithium metal and sodium metal batteries , 2020 .

[14]  X. Sun,et al.  Li4.4Sn encapsulated in hollow graphene spheres for stable Li metal anodes without dendrite formation for long cycle-life of lithium batteries , 2020 .

[15]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[16]  B. Liu,et al.  One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors , 2020, Energy Storage Materials.

[17]  Tingting Xu,et al.  Advanced carbon nanostructures for future high performance sodium metal anodes , 2020 .

[18]  Yue Tian,et al.  Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes , 2020 .

[19]  Ping Liu,et al.  Protective coatings for lithium metal anodes: Recent progress and future perspectives , 2020 .

[20]  H. Yang,et al.  Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. , 2020, Nanoscale.

[21]  Renjie Chen,et al.  Recent advances in nanostructured carbon for sodium-ion batteries , 2020 .

[22]  N. Zheng,et al.  Stable Nano‐Encapsulation of Lithium Through Seed‐Free Selective Deposition for High‐Performance Li Battery Anodes , 2020, Advanced Energy Materials.

[23]  Shuying Cheng,et al.  A Hierarchical Copper Oxide–Germanium Hybrid Film for High Areal Capacity Lithium Ion Batteries , 2020, Frontiers in Chemistry.

[24]  Chenghao Yang,et al.  Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes , 2019 .

[25]  Zhengjin Yang,et al.  Advances in Artificial Layers for Stable Lithium Metal Anodes. , 2019, Chemistry.

[26]  Jian Yang,et al.  Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes , 2019 .

[27]  Yong Cheng,et al.  Encapsulating lithium and sodium inside amorphous carbon nanotubes through gold-seeded growth , 2019 .

[28]  Jiayan Luo,et al.  Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. , 2019, Accounts of chemical research.

[29]  Huan Wang,et al.  Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes , 2019, Journal of Materials Chemistry A.

[30]  Bing Sun,et al.  Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High‐Energy Batteries , 2019, Advanced materials.

[31]  Seok Woo Lee,et al.  Enhanced Performance of Electric Double Layer Micro-supercapacitor Based on Novel Carbon Encapsulated Cu Nanowire Network Structure as Electrode. , 2019, ACS applied materials & interfaces.

[32]  Meilin Liu,et al.  In situ Raman study of nickel bicarbonate for high-performance energy storage device , 2019, Nano Energy.

[33]  Y. S. Yun,et al.  Anode-Free Sodium Metal Batteries Based on Nanohybrid Core-Shell Templates. , 2019, Small.

[34]  Rui Zhang,et al.  ZnO nanoconfined 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes , 2019, Journal of Materials Chemistry A.

[35]  Xin Jian Li,et al.  Highly Polarization-Sensitive, Broadband, Self-Powered Photodetector Based on Graphene/PdSe2/Germanium Heterojunction. , 2019, ACS nano.

[36]  Jiajie Liang,et al.  Superlithiophilic Amorphous SiO2–TiO2 Distributed into Porous Carbon Skeleton Enabling Uniform Lithium Deposition for Stable Lithium Metal Batteries , 2019, Advanced science.

[37]  Tingting Xu,et al.  Design and understanding of core/branch-structured VS2 nanosheets@CNTs as high-performance anode materials for lithium-ion batteries. , 2019, Nanoscale.

[38]  H. Yang,et al.  Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability , 2019, Journal of Materials Chemistry A.

[39]  Dingchang Lin,et al.  Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode , 2019, Advanced Energy Materials.

[40]  De‐Yin Wu,et al.  Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloy‐Based Sodiophilic Interphase , 2019, Advanced materials.

[41]  Fengxiang Zhang,et al.  Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries , 2019, Journal of Materials Chemistry A.

[42]  Yayuan Liu,et al.  Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. , 2019, Nano letters.

[43]  Quan-hong Yang,et al.  Graphitic Carbon Nitride Induced Micro‐Electric Field for Dendrite‐Free Lithium Metal Anodes , 2019, Advanced Energy Materials.

[44]  Rui Zhang,et al.  Lithiophilic LiC6 Layers on Carbon Hosts Enabling Stable Li Metal Anode in Working Batteries , 2019, Advanced materials.

[45]  Yuegang Zhang,et al.  Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode , 2018, Nano Research.

[46]  Y. Meng,et al.  Quantifying inactive lithium in lithium metal batteries , 2018, Nature.

[47]  Yang Zhao,et al.  Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries , 2018 .

[48]  K. Edström,et al.  Lightweight, Thin, and Flexible Silver Nanopaper Electrodes for High‐Capacity Dendrite‐Free Sodium Metal Anodes , 2018, Advanced Functional Materials.

[49]  Yao Fu,et al.  Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase , 2018, Advanced Energy Materials.

[50]  Yi Cui,et al.  Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy , 2018, Joule.

[51]  Yi Cui,et al.  Design of Hollow Nanostructures for Energy Storage, Conversion and Production , 2018, Advanced materials.

[52]  Hao Zhang,et al.  Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode , 2018, Nature Communications.

[53]  Tingting Xu,et al.  Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector , 2018, ACS Photonics.

[54]  T. Tao,et al.  Nanoflake Arrays of Lithiophilic Metal Oxides for the Ultra‐Stable Anodes of Lithium‐Metal Batteries , 2018, Advanced Functional Materials.

[55]  Jiayan Luo,et al.  Controlling Nucleation in Lithium Metal Anodes. , 2018, Small.

[56]  Allen Pei,et al.  Engineering stable interfaces for three-dimensional lithium metal anodes , 2018, Science Advances.

[57]  X. Sun,et al.  Interface Design and Development of Coating Materials in Lithium–Sulfur Batteries , 2018 .

[58]  H. Yang,et al.  3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries , 2018 .

[59]  Ya‐Xia Yin,et al.  Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes , 2018, Nano Energy.

[60]  Y. Gong,et al.  Dendrite‐Free Metallic Lithium in Lithiophilic Carbonized Metal–Organic Frameworks , 2018 .

[61]  Bing Sun,et al.  Dendrite‐Free Sodium‐Metal Anodes for High‐Energy Sodium‐Metal Batteries , 2018, Advanced materials.

[62]  I. Shakir,et al.  Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode , 2018 .

[63]  Huan Wang,et al.  A Chemically Engineered Porous Copper Matrix with Cylindrical Core–Shell Skeleton as a Stable Host for Metallic Sodium Anodes , 2018, Advanced Functional Materials.

[64]  Qian Sun,et al.  High Capacity, Dendrite-Free Growth, and Minimum Volume Change Na Metal Anode. , 2018, Small.

[65]  G. Zeng,et al.  Carbon-based core–shell nanostructured materials for electrochemical energy storage , 2018 .

[66]  Rui Zhang,et al.  Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries , 2018 .

[67]  Weiyuan Deng,et al.  Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes , 2018 .

[68]  Qiang Zhang,et al.  3D TiC/C Core/Shell Nanowire Skeleton for Dendrite‐Free and Long‐Life Lithium Metal Anode , 2018 .

[69]  D. Fang,et al.  In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field , 2018 .

[70]  Fengxiang Zhang,et al.  Novel Synergistic Strategy for Developing High-Performance Lithium Sulfur Batteries of Large Areal Sulfur Loading by SEI Modified Separator , 2018 .

[71]  A. Kolmakov,et al.  From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via in Situ Scanning Electron Microscopy. , 2018, Nano letters.

[72]  Hong‐Jie Peng,et al.  Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode , 2018 .

[73]  Qiaobao Zhang,et al.  In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors , 2017 .

[74]  Jun Chen,et al.  Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires. , 2017, Chemical communications.

[75]  A. Hayashi,et al.  Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solid-state Na/S batteries , 2017 .

[76]  L. Archer,et al.  Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields , 2017 .

[77]  S. Choudhury,et al.  Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries , 2017 .

[78]  Daniel Adjei Agyeman,et al.  High‐Energy‐Density Metal–Oxygen Batteries: Lithium–Oxygen Batteries vs Sodium–Oxygen Batteries , 2017, Advanced materials.

[79]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[80]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[81]  Fengxiang Zhang,et al.  Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High‐Stability Sulfur Cathode , 2017, Advanced materials.

[82]  J. Connell,et al.  Lithium metal protected by atomic layer deposition metal oxide for high performance anodes , 2017 .

[83]  Tingting Xu,et al.  Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries , 2017, Ionics.

[84]  Lin Liu,et al.  Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode , 2017 .

[85]  Qiang Zhang,et al.  Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite‐Free Lithium Metal Anode , 2017 .

[86]  Yue Yu,et al.  In Situ Construction of Stable Tissue‐Directed/Reinforced Bifunctional Separator/Protection Film on Lithium Anode for Lithium–Oxygen Batteries , 2017, Advanced materials.

[87]  Ya‐Xia Yin,et al.  Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. , 2017, Journal of the American Chemical Society.

[88]  K. Uosaki,et al.  Insulative Microfiber 3D Matrix as a Host Material Minimizing Volume Change of the Anode of Li Metal Batteries , 2017 .

[89]  Shaomao Xu,et al.  High-capacity, low-tortuosity, and channel-guided lithium metal anode , 2017, Proceedings of the National Academy of Sciences.

[90]  Yizhou Zhu,et al.  Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode , 2017, Advanced science.

[91]  Boyang Liu,et al.  A carbon-based 3D current collector with surface protection for Li metal anode , 2017, Nano Research.

[92]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[93]  L. Archer,et al.  Regulating Li deposition at artificial solid electrolyte interphases , 2017 .

[94]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[95]  Kun Fu,et al.  Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. , 2017, Nano letters.

[96]  N. Imanishi,et al.  Surface Layer and Morphology of Lithium Metal Electrodes , 2016 .

[97]  J. Xie,et al.  Au‐Decorated Cracked Carbon Tube Arrays as Binder‐Free Catalytic Cathode Enabling Guided Li2O2 Inner Growth for High‐Performance Li‐O2 Batteries , 2016 .

[98]  Xin-Bing Cheng,et al.  Nanostructured energy materials for electrochemical energy conversion and storage: A review , 2016 .

[99]  J. Tu,et al.  In situ confocal microscopic observation on inhibiting the dendrite formation of a-CNx/Li electrode , 2016 .

[100]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[101]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[102]  Bingan Lu,et al.  Covalent sulfur for advanced room temperature sodium-sulfur batteries , 2016 .

[103]  Xin-Bing Cheng,et al.  Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode , 2016 .

[104]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[105]  Yi Cui,et al.  Promises and challenges of nanomaterials for lithium-based rechargeable batteries , 2016, Nature Energy.

[106]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[107]  L. Archer,et al.  Stable Artificial Solid Electrolyte Interphases for Lithium Batteries , 2016, 1604.04200.

[108]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[109]  Samuel S. Cartmell,et al.  Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High‐Concentration Electrolyte Layer , 2016 .

[110]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[111]  Yu-Guo Guo,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[112]  Yi Cui,et al.  Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating , 2016, Proceedings of the National Academy of Sciences.

[113]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[114]  Deyu Wang,et al.  Volumetric variation confinement: surface protective structure for high cyclic stability of lithium metal electrodes , 2016 .

[115]  D. J. Lee,et al.  Sustainable Redox Mediation for Lithium–Oxygen Batteries by a Composite Protective Layer on the Lithium‐Metal Anode , 2016, Advanced materials.

[116]  Kevin N. Wood,et al.  Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments , 2015 .

[117]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[118]  Qian Sun,et al.  Toward a Sodium–“Air” Battery: Revealing the Critical Role of Humidity , 2015 .

[119]  Xueping Gao,et al.  Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery , 2015 .

[120]  S. Koch,et al.  Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes , 2015, 1505.07985.

[121]  Xiaogang Han,et al.  Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. , 2015, ACS nano.

[122]  J. Tu,et al.  An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries , 2015 .

[123]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[124]  Hong‐Jie Peng,et al.  Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries. , 2015, ACS nano.

[125]  Z. Wen,et al.  Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode , 2015 .

[126]  J. Tu,et al.  Magnetron sputtering amorphous carbon coatings on metallic lithium: Towards promising anodes for lithium secondary batteries , 2014 .

[127]  Guoqiang Ma,et al.  A lithium anode protection guided highly-stable lithium-sulfur battery. , 2014, Chemical communications.

[128]  S. Chu,et al.  Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. , 2014, Nano letters.

[129]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[130]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[131]  Yong Yang,et al.  Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries , 2014 .

[132]  Li-Jun Wan,et al.  A High‐Energy Room‐Temperature Sodium‐Sulfur Battery , 2014, Advanced materials.

[133]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[134]  Kai Xie,et al.  Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries , 2014 .

[135]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[136]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[137]  Peng Lu,et al.  Direct calculation of Li-ion transport in the solid electrolyte interphase. , 2012, Journal of the American Chemical Society.

[138]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[139]  R. Ruoff,et al.  Mechanical measurements of ultra-thin amorphous carbon membranes using scanning atomic force microscopy , 2012 .

[140]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[141]  Zhen Zhou,et al.  Li ion battery materials with core-shell nanostructures. , 2011, Nanoscale.

[142]  Z. Wen,et al.  Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries , 2011 .

[143]  H. Sakaebe,et al.  Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based , 2010 .

[144]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[145]  M. Armand,et al.  Building better batteries , 2008, Nature.

[146]  Chunyu Li,et al.  Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites , 2007 .

[147]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .

[148]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[149]  Makoto Ue,et al.  Effect of vinylene carbonate as additive to electrolyte for lithium metal anode , 2004 .

[150]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[151]  Doron Aurbach,et al.  A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions , 2002 .

[152]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[153]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[154]  J.-N. Chazalviel,et al.  In situ study of dendritic growth inlithium/PEO-salt/lithium cells , 1998 .

[155]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[156]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[157]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[158]  H. Pang,et al.  Core-shell materials for advanced batteries , 2019, Chemical Engineering Journal.

[159]  E. Peled,et al.  Review—SEI: Past, Present and Future , 2017 .

[160]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.

[161]  Hong‐Jie Peng,et al.  Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries. , 2016, Small.

[162]  M. Winter,et al.  Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries , 2015 .

[163]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[164]  A. Hexemer,et al.  Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries , 2012 .