A quantum-mechanical study of the vinyl fluoride adsorbed on the rutile TiO2(110) surface

Abstract The adsorption of vinyl fluoride on the rutile TiO 2 (1 1 0) surface has been simulated, on the basis of a recently proposed experimental model, using hybrid-exchange density functional theory. Different surface coverages have been considered and the lateral interaction between adsorbed vinyl fluoride molecules has been quantified through a simple model of nearest and next nearest neighbouring molecules. The vibrational frequencies of the adsorbed molecule have been calculated and are found to be in excellent agreement with those observed providing support for the proposed adsorption model. The effect of the adsorption on the electronic structure of the molecule and the surface have been characterised by computing electrostatic potential maps and the local density of states.

[1]  J. Yates,et al.  Mechanism of Photooxidation of Trichloroethylene on TiO2: Detection of Intermediates by Infrared Spectroscopy , 1996 .

[2]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[3]  Lee,et al.  Lattice dynamics and dielectric properties of incipient ferroelectric TiO2 rutile. , 1994, Physical review. B, Condensed matter.

[4]  Ramamoorthy,et al.  First-principles calculations of the energetics of stoichiometric TiO2 surfaces. , 1994, Physical review. B, Condensed matter.

[5]  Thomas Bredow,et al.  Electronic properties of rutile Ti O 2 ultrathin films: Odd-even oscillations with the number of layers , 2004 .

[6]  B. Johansson,et al.  Optical Properties of Oxide Compounds PbO, SnO2 and TiO2 , 2004 .

[7]  Hess,et al.  Electronic and geometrical structure of rutile surfaces. , 1994, Physical Review B (Condensed Matter).

[8]  Freeman,et al.  Electronic structure and relaxed geometry of the TiO2 rutile (110) surface. , 1994, Physical review. B, Condensed matter.

[9]  D. C. Mckean,et al.  CH stretching frequencies, bond lengths and strengths in halogenated ethylenes , 1975 .

[10]  F. Illas,et al.  Antiferromagnetic Exchange Interactions from Hybrid Density Functional Theory , 1997 .

[11]  R. Armstrong,et al.  Ion scattering measurements of rutile TiO2(110)-(1 × 1) surface relaxation , 1997 .

[12]  F. Illas,et al.  MAGNETIC COUPLING IN IONIC SOLIDS STUDIED BY DENSITY FUNCTIONAL THEORY , 1998 .

[13]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[14]  S. Kutsuna,et al.  Photocatalytic mineralization of vinyl chloride on TiO2 , 2001 .

[15]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[16]  D. Christensen,et al.  Infrared absorption spectra of deuterated vinyl fluorides , 1958 .

[17]  Geoff Thornton,et al.  Revisiting the surface structure of TiO2(110): A quantitative low-energy electron diffraction study , 2005 .

[18]  D. Lide,et al.  An improved structure determination for vinyl fluoride , 1961 .

[19]  G. Thornton,et al.  Effects of exchange, correlation, and numerical approximations on the computed properties of the rutile TiO2 (100) surface , 1999 .

[20]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[21]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[22]  M. Gillan,et al.  Ab initio simulation of molecular processes on oxide surfaces , 1997 .

[23]  Nicholas M. Harrison,et al.  First-principles calculations of the phase stability of TiO2 , 2002 .

[24]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[25]  Gg Balint-Kurti,et al.  Lecture notes in Chemistry , 2000 .

[26]  Bartolomeo Civalleri,et al.  Hartree–Fock geometry optimisation of periodic systems with the Crystal code , 2001 .

[27]  A. Goodman,et al.  Gas-Phase Photooxidation of Trichloroethylene on TiO2 and ZnO: Influence of Trichloroethylene Pressure, Oxygen Pressure, and the Photocatalyst Surface on the Product Distribution , 1998 .

[28]  Matthias Scheffler,et al.  The influence of soft vibrational modes on our understanding of oxide surface structure , 1999 .

[29]  A. Oskam,et al.  Coriolis interaction between ν8, ν10, and ν11 in the infrared spectrum of vinyl fluoride , 1971 .

[30]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[31]  Julian D. Gale,et al.  Simulation of low index rutile surfaces with a transferable variable-charge Ti–O interatomic potential and comparison with ab initio results , 2002 .

[32]  Zhang,et al.  Cation-ligand hybridization for stoichiometric and reduced TiO2 (110) surfaces determined by resonant photoemission. , 1991, Physical review. B, Condensed matter.

[33]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[34]  D. W. Fischer,et al.  X-Ray Band Spectra and Molecular-Orbital Structure of Rutile TiO 2 , 1972 .

[35]  Georg Kresse,et al.  A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations , 1997 .

[36]  M. Gillan,et al.  The TiO2(100)(1 × 3) reconstruction: insights from ab initio calculations , 1996 .

[37]  P. Paufler,et al.  Numerical Data and Functional Relationships in Science and Technology - New Series. , 1994 .

[38]  M. Gillan,et al.  FIRST-PRINCIPLES SPIN-POLARIZED CALCULATIONS ON THE REDUCED AND RECONSTRUCTED TIO2 (110) SURFACE , 1997 .

[39]  A. Baldereschi,et al.  Born charge differences ofTiO2polytypes: Multipole expansion of Wannier charge densities , 2004 .

[40]  Analytical Hartree-Fock gradients for periodic systems , 2000, cond-mat/0011285.

[41]  Richard L. Martin,et al.  Effect of Fock exchange on the electronic structure and magnetic coupling in NiO , 2002 .

[42]  H. Onishi,et al.  Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution , 1994 .

[43]  M. Causà,et al.  ELECTRONIC AND GEOMETRICAL STRUCTURE OF BULK RUTILE STUDIED WITH HARTREE-FOCK AND DENSITY FUNCTIONAL METHODS , 1996 .

[44]  Roberto Dovesi,et al.  Hartree Fock Ab Initio Treatment of Crystalline Systems , 1988 .

[45]  P. Stoppa,et al.  Vinyl halides adsorbed on TiO2 surface: FTIR spectroscopy studies and ab initio calculations , 2005 .

[46]  Murray,et al.  Effect of stoichiometry on the structure of TiO2(110). , 1995, Physical review. B, Condensed matter.

[47]  D. Norman,et al.  RELAXATION OF TIO2(110)-(1 X 1) USING SURFACE X-RAY DIFFRACTION , 1997 .

[48]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[49]  N. Harrison,et al.  On the prediction of band gaps from hybrid functional theory , 2001 .

[50]  M. Mohseni,et al.  Gas phase vinyl chloride (VC) oxidation using TiO2-based photocatalysis , 2003 .

[51]  D. Blake,et al.  Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water , 1999 .

[52]  R. Ahuja,et al.  Materials science: The hardest known oxide , 2001, Nature.

[53]  Ng,et al.  Evidence for the Tunneling Site on Transition-Metal Oxides: TiO2(110). , 1996, Physical review letters.

[54]  C. Catlow,et al.  Pseudopotential periodic hartree-fock study of rutile TiO2 , 1991 .

[55]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.

[56]  D. Blake,et al.  Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas-phase photocatalytic oxidation of trichloroethylene over titanium oxide: products and mechanisms , 1993 .

[57]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[58]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .