Residual Stress and Deformation Modelling for Metal Additive Manufacturing Processes

Metal additive Manufacturing has gained increasing attention in the area of rapid manufacturing and repairing. This process involves extremely high thermal gradients and heat and cooling rate, resulting in residual stresses and distortion. This paper presents a 3D sequentially coupled thermo-mechanical finite element model to predict residual stresses and deformations. The temperature distribution, thermal stress field and geometry deformation across domain are illustrated. The effect of deposition parameters on residual stress and deflections are also explored. A set of validation experiments for mechanical effects were conducted using laser displacement sensor. The comparisons between the simulated and experimental results show good agreement.