Lexicographic Closure for Defeasible Description Logics

In the field of non-monotonic logics, the lexicographic closure is acknowledged as a a powerful and logically well-characterized approach; we are going to see that such a construction can be applied in the field of Description Logics, an important knowledge representation formalism, and we shall provide a simple decision procedure.

[1]  Gerhard Brewka,et al.  The Logic of Inheritance in Frame Systems , 1987, IJCAI.

[2]  David Poole,et al.  A Logical Framework for Default Reasoning , 1988, Artif. Intell..

[3]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[4]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[5]  Joachim Quantz,et al.  A Preference Semantics for Defaults in Terminological Logics , 1992, International Conference on Principles of Knowledge Representation and Reasoning.

[6]  Franz Baader,et al.  How to Prefer More Specific Defaults in Terminological Default Logic , 1993, IJCAI.

[7]  Umberto Straccia Default Inheritance Reasoning in Hybrid KL-ONE-Style Logics , 1993, IJCAI.

[8]  David Makinson,et al.  General patterns in nonmonotonic reasoning , 1994 .

[9]  Dov M. Gabbay,et al.  Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning , 1994 .

[10]  Alexander Bochman,et al.  A Logical Theory of Nonmonotonic Inference and Belief Change , 2001, Artificial Intelligence.

[11]  Francesco M. Donini,et al.  Description logics of minimal knowledge and negation as failure , 2002, TOCL.

[12]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[13]  Daniel Lehmann,et al.  Another perspective on default reasoning , 1995, Annals of Mathematics and Artificial Intelligence.

[14]  Carsten Lutz,et al.  The Complexity of Circumscription in DLs , 2009, J. Artif. Intell. Res..

[15]  Laura Giordano,et al.  ALC + T: a Preferential Extension of Description Logics , 2009, Fundam. Informaticae.

[16]  Pascal Hitzler,et al.  A Preferential Tableaux Calculus for Circumscriptive ALCO , 2009 .

[17]  Umberto Straccia,et al.  Rational Closure for Defeasible Description Logics , 2010, JELIA.

[18]  Piero A. Bonatti,et al.  On the Complexity of EL with Defeasible Inclusions , 2011, IJCAI.

[19]  Laura Giordano,et al.  Reasoning about Typicality in Low Complexity DLs: The Logics EL⊥Tmin and DL-Litec Tmin , 2011, IJCAI.

[20]  Piero A. Bonatti,et al.  Defeasible Inclusions in Low-Complexity DLs , 2011, J. Artif. Intell. Res..

[21]  Thomas Andreas Meyer,et al.  Semantic Foundation for Preferential Description Logics , 2011, Australasian Conference on Artificial Intelligence.

[22]  Umberto Straccia,et al.  Defeasible Inheritance-Based Description Logics , 2013, J. Artif. Intell. Res..