Preparation, Characterization and In vitro Biological activity of 5-Fluorouracil Loaded onto poly (D, L-lactic-co-glycolic acid) Nanoparticles

[1]  H. Abdallah,et al.  In vitro release and cytotoxicity activity of 5-fluorouracil entrapped polycaprolactone nanoparticles , 2021, Polymer Bulletin.

[2]  R. Al-Salahi,et al.  Antiproliferative and Antiangiogenic Properties of New VEGFR-2-targeting 2-thioxobenzo[g]quinazoline Derivatives (In Vitro) , 2020, Molecules.

[3]  H. Awad,et al.  Chemistry of Phosphorus Ylides. Part 47. Synthesis of Organophosphorus and Selenium Pyrazolone Derivatives, Their Antioxidant Activity, and Cytotoxicity against MCF7 and HepG2 , 2020, Russian Journal of General Chemistry.

[4]  S. A. Abd El-Alim,et al.  Formulation, characterization and in vitro release study of 5-fluorouracil loaded chitosan nanoparticles. , 2020, International journal of biological macromolecules.

[5]  F. Madani,et al.  Evaluating Inhibitory Effects of Paclitaxel and Vitamin D3 Loaded Poly Lactic Glycolic Acid Co-Delivery Nanoparticles on the Breast Cancer Cell Line , 2019, Advanced pharmaceutical bulletin.

[6]  Ashok Kumar,et al.  Physical PEGylation Enhances The Cytotoxicity Of 5-Fluorouracil-Loaded PLGA And PCL Nanoparticles , 2019, International journal of nanomedicine.

[7]  H. Awad,et al.  Chemical Composition and Biological Activity of Salicornia fruticosa L. , 2019, Egyptian Journal of Chemistry.

[8]  P. Bedi,et al.  Spectral Analysis of Drug Loaded Nanoparticles for Drug-Polymer Interactions , 2018, Journal of Drug Delivery and Therapeutics.

[9]  S. A. Abd El-Alim,et al.  Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles , 2018 .

[10]  A. de Lucas,et al.  Improvement of PLGA loading and release of curcumin by supercritical technology , 2018, The Journal of Supercritical Fluids.

[11]  Hiroki Nagai,et al.  Cancer prevention from the perspective of global cancer burden patterns. , 2017, Journal of thoracic disease.

[12]  Gowthamarajan Kuppusamy,et al.  5-Fluorouracil enteric-coated nanoparticles for improved apoptotic activity and therapeutic index in treating colorectal cancer , 2016, Drug delivery.

[13]  F. F. Sahle,et al.  Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential. , 2016, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  Shashank K Singh,et al.  PLGA nanoparticles augmented the anticancer potential of pentacyclic triterpenediol in vivo in mice , 2016 .

[15]  D. Nayak,et al.  Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery. , 2016, IET nanobiotechnology.

[16]  Xiabin Jing,et al.  Antitumor activity of electrospun polylactide nanofibers loaded with 5-fluorouracil and oxaliplatin against colorectal cancer , 2016, Drug delivery.

[17]  J. Irache,et al.  Study of Thermal Degradation of PLGA, PLGA Nanospheres and PLGA/Maghemite Superparamagnetic Nanospheres , 2015 .

[18]  K. Narayanan,et al.  A Fractional Factorial Design to Study the Effect of Process Variables on the Preparation of Hyaluronidase Loaded PLGA Nanoparticles , 2014, Enzyme research.

[19]  H. Ramadan,et al.  Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma , 2014, Applied Nanoscience.

[20]  Scott W. Smith,et al.  Physical stability of pharmaceutical formulations: solid-state characterization of amorphous dispersions , 2013 .

[21]  O. Şanlı,et al.  Release of Anticancer Drug 5-Fluorouracil from Different Ionically Crosslinked Alginate Beads , 2012 .

[22]  Xiaoyan Xiao,et al.  Preparation and characterization of teniposide PLGA nanoparticles and their uptake in human glioblastoma U87MG cells. , 2012, International journal of pharmaceutics.

[23]  S. A. Nair,et al.  Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA , 2011, International journal of nanomedicine.

[24]  Amit Jain,et al.  The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(gamma-benzyl L-glutamate)-b-hyaluronan polymersomes. , 2010, Biomaterials.

[25]  Baorui Liu,et al.  Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(epsilon-caprolactone) nanoparticles: preparation and antitumor activity in vivo. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[26]  A. Elaissari,et al.  Nanotechnology olymer-based nanocapsules for drug delivery , 2009 .

[27]  Ning Zhang,et al.  5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies , 2008, Molecules.

[28]  Z. Guan,et al.  Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles , 2008, BMC Cancer.

[29]  Kwangmeyung Kim,et al.  Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[30]  Á. Delgado,et al.  Poly(alkylcyanoacrylate) colloidal particles as vehicles for antitumour drug delivery: a comparative study. , 2008, Colloids and surfaces. B, Biointerfaces.

[31]  Seppo Parkkila,et al.  BMC Cancer BioMed Central Research article Carbonic anhydrase IX in oligodendroglial brain tumors , 2008 .

[32]  Q. Ping,et al.  PLGA Nanoparticles for the Oral Delivery of 5-Fluorouracil Using High Pressure Homogenization-Emulsification as the Preparation Method and In Vitro/In Vivo Studies , 2008 .

[33]  B. Suresh,et al.  Development and in-vitro Evaluation of a Topical Drug Delivery System Containing Betamethazone Loaded Ethyl Cellulose Nanospheres , 2007 .

[34]  M. Alagar,et al.  Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. , 2007, International journal of pharmaceutics.

[35]  B. Kramer,et al.  Clinical cancer advances 2006: major research advances in cancer treatment, prevention, and screening--a report from the American Society of Clinical Oncology. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  Keyuan Zhou,et al.  Enhanced liver targeting of 5-fluorouracil using galactosylated human serum albumin as a carrier molecule , 2006, Journal of drug targeting.

[37]  Si-Shen Feng,et al.  PLGA/TPGS Nanoparticles for Controlled Release of Paclitaxel: Effects of the Emulsifier and Drug Loading Ratio , 2003, Pharmaceutical Research.

[38]  P. Johnston,et al.  5-Fluorouracil: mechanisms of action and clinical strategies , 2003, Nature Reviews Cancer.

[39]  Jeffrey A. Hubbell,et al.  Enhancing Drug Function , 2003, Science.

[40]  H. Klok,et al.  Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. , 2001, Advanced drug delivery reviews.

[41]  Y. Kawashima,et al.  Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. , 2001, The Journal of pharmacology and experimental therapeutics.

[42]  R. Danesi,et al.  Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. , 2001, Annals of oncology : official journal of the European Society for Medical Oncology.

[43]  P. Vreken,et al.  Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[44]  Y. Rustum,et al.  Synergistic antitumor activity of irinotecan in combination with 5-fluorouracil in rats bearing advanced colorectal cancer: role of drug sequence and dose. , 2000, Cancer research.

[45]  T. Kubota [Theoretical basis for low-dose CDDP/5-FU therapy]. , 1999, Gan to kagaku ryoho. Cancer & chemotherapy.

[46]  M. Ramchandani,et al.  In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[47]  Hans P. Merkle,et al.  Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres : importance of polymer degradation and antigen release for immune response , 1996 .

[48]  S. Green,et al.  A randomized comparison of intra-arterial versus intravenous BCNU, with or without intravenous 5-fluorouracil, for newly diagnosed patients with malignant glioma. , 1992, Journal of neurosurgery.

[49]  L. M. Sanders,et al.  Controlled delivery of an LHRH analogue from biodegradable injectable microspheres , 1985 .

[50]  H. Abdallah,et al.  Eco-Friendly Route for Encapsulation of 5-Fluorouracil Into Polycaprolactone Nanoparticles , 2020 .

[51]  M. Kumar,et al.  PREPARATION, PHYSICOCHEMICAL CHARACTERIZATION AND IN VITRO EVALUATION OF OXALIPLATIN SOLID LIPID NANOPARTICLES FOR THE TREATMENT OF COLORECTAL CANCER , 2014 .

[52]  M. Pulat,et al.  5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics , 2012 .

[53]  P. Larkin,et al.  Introduction: Infrared and Raman Spectroscopy , 2011 .

[54]  Moon Suk Kim,et al.  Degradation behaviour in vitro for poly(D,L-lactide-co-glycolide) as drug carrier. , 2004, Bio-medical materials and engineering.

[55]  J. Hubbell Materials science. Enhancing drug function. , 2003, Science.

[56]  Y. Cheng,et al.  Metabolism and mechanism of action of 5-fluorouracil. , 1990, Pharmacology & therapeutics.