Isolation and characterisation of dominant acetic acid bacteria and yeast isolated from Kombucha samples at point of sale in New Zealand

[1]  P. Vandamme,et al.  Characterization of novel Gluconobacter species from fruits and fermented food products: Gluconobacter cadivus sp. nov., Gluconobacter vitians sp. nov. and Gluconobacter potus sp. nov. , 2021, International journal of systematic and evolutionary microbiology.

[2]  N. Čadež,et al.  Starmerella vitis f.a., sp. nov., a yeast species isolated from flowers and grapes , 2020, Antonie van Leeuwenhoek.

[3]  E. Zubaidah,et al.  Changes in chemichal characteristics of kombucha from various cultivars of snake fruit during fermentation , 2019, IOP Conference Series: Earth and Environmental Science.

[4]  V. Waisundara,et al.  Usage of Kombucha ‘Tea Fungus’ for Enhancement of Functional Properties of Herbal Beverages , 2018, Frontiers and New Trends in the Science of Fermented Food and Beverages.

[5]  A. Morata,et al.  Schizosaccharomyces pombe: A Promising Biotechnology for Modulating Wine Composition , 2018, Fermentation.

[6]  Morsyleide de Freitas Rosa,et al.  Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. , 2018, Food technology and biotechnology.

[7]  J. Bouajila,et al.  Understanding Kombucha Tea Fermentation: A Review. , 2018, Journal of food science.

[8]  V. Waisundara,et al.  Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation , 2018, Food science & nutrition.

[9]  R. Jayabalan,et al.  A review on health benefits of kombucha nutritional compounds and metabolites , 2018 .

[10]  M. Modarressi,et al.  Isolation and identification of Komagataeibacter xylinus from Iranian traditional vinegars and molecular analyses , 2017, Iranian journal of microbiology.

[11]  Thomas Abeel,et al.  Nanopore sequencing enables near-complete de novo assembly of Saccharomyces cerevisiae reference strain CEN.PK113-7D , 2017, bioRxiv.

[12]  D. Kołożyn-Krajewska,et al.  Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties , 2017 .

[13]  J. Chun,et al.  Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies , 2017, International journal of systematic and evolutionary microbiology.

[14]  P. Vandamme,et al.  Identification of acetic acid bacteria through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and report of Gluconobacter nephelii Kommanee et al. 2011 and Gluconobacter uchimurae Tanasupawat et al. 2012 as later heterotypic synonyms of Gluconobacter japonicus Malimas e , 2017, Systematic and applied microbiology.

[15]  M. Sathishkumar,et al.  Kombucha Tea: Metabolites , 2017 .

[16]  M. Skute,et al.  Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha , 2017, Applied Microbiology and Biotechnology.

[17]  P. Danvirutai,et al.  Kombucha Production by Combinations of Black Tea and Apple Juice , 2016 .

[18]  G. Stewart,et al.  Saccharomyces cerevisiae in the Production of Fermented Beverages , 2016 .

[19]  Tehmeena Mukadam,et al.  Isolation and Characterization of Bacteria and Yeast from Kombucha Tea , 2016 .

[20]  A. Chatzinotas,et al.  Kombucha tea fermentation: Microbial and biochemical dynamics. , 2016, International journal of food microbiology.

[21]  Yaiza Benavent-Gil,et al.  Acetobacter musti sp. nov., isolated from Bobal grape must. , 2016, International journal of systematic and evolutionary microbiology.

[22]  V. Joshi,et al.  Kombucha: Technology, Microbiology, Production, Composition and Therapeutic Value , 2016 .

[23]  K. Verstrepen,et al.  Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations. , 2015, International journal of food microbiology.

[24]  K. Schneider,et al.  A new, highly effective primer pair to exclude algae when amplifying nuclear large ribosomal subunit (LSU) DNA from lichens , 2015, The Lichenologist.

[25]  J. Piškur,et al.  The wine and beer yeast Dekkera bruxellensis , 2014, Yeast.

[26]  Jasmina Vitas,et al.  A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. , 2014, Comprehensive reviews in food science and food safety.

[27]  R. P. Ross,et al.  Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. , 2014, Food microbiology.

[28]  J. Canadanovic-Brunet,et al.  Polyphenols and antioxidant activities of Kombucha beverage enriched with Coffeeberry® extract , 2014 .

[29]  B. Nummer Kombucha brewing under the Food and Drug Administration model Food Code: risk analysis and processing guidance. , 2013, Journal of environmental health.

[30]  M. Gullo,et al.  Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation , 2013, Indian Journal of Microbiology.

[31]  ański,et al.  Characteristics of Kombucha fermentation on medicinal herbs from Lamiaceae family , 2013 .

[32]  Md.Zahid Hasan,et al.  Isolation and characterization of Acetobacter and Gluconobacter spp from sugarcane and rotten fruits , 2013 .

[33]  Q. Yao,et al.  Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar , 2013, European Food Research and Technology.

[34]  T. D. Cruz,et al.  Gelatin Hydrolysis Test Protocol , 2012 .

[35]  A. Karim,et al.  Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose , 2012 .

[36]  Rebecca Buxton Nitrate and Nitrite Reduction Test Protocols , 2011 .

[37]  Y. Hsieh,et al.  Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells—Characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin , 2011 .

[38]  Karen Reiner Catalase Test Protocol , 2010 .

[39]  Laura A. Cathcart,et al.  Oxidase Test Protocol , 2010 .

[40]  C. Torres,et al.  Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production , 2010 .

[41]  S. Nielsen Standard Solutions and Titratable Acidity , 2010 .

[42]  A. R. Binupriya,et al.  Hepatoprotective and curative properties of Kombucha tea against carbon tetrachloride-induced toxicity. , 2009, Journal of microbiology and biotechnology.

[43]  S. M. Njoroge,et al.  Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi). , 2008 .

[44]  Yuzo Yamada,et al.  Genera and species in acetic acid bacteria. , 2008, International journal of food microbiology.

[45]  Paolo Giudici,et al.  Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. , 2008, International journal of food microbiology.

[46]  Peter Raspor,et al.  Biotechnological Applications of Acetic Acid Bacteria , 2008 .

[47]  E. Chukeatirote,et al.  Identification of Acidotolerant Acetic Acid Bacteria Isolated from Thailand Sources , 2007 .

[48]  Ai Leng Teoh,et al.  Yeast ecology of Kombucha fermentation. , 2004, International journal of food microbiology.

[49]  M. Lambrechts,et al.  The enumeration and identification of acetic acid bacteria from South African red wine fermentations. , 2002, International journal of food microbiology.

[50]  M. Deplano,et al.  Yeast populations in Sardinian feta cheese. , 2001, International journal of food microbiology.

[51]  C. Chen,et al.  Changes in major components of tea fungus metabolites during prolonged fermentation , 2000, Journal of applied microbiology.

[52]  E. Farnworth,et al.  Tea, Kombucha, and health: a review. , 2000 .

[53]  Yang Zhu,et al.  Kombucha fermentation and its antimicrobial activity. , 2000, Journal of agricultural and food chemistry.

[54]  Didier Raoult,et al.  Molecular identification by , 2000 .

[55]  R. Ramani,et al.  Efficacy of API 20C and ID 32C Systems for Identification of Common and Rare Clinical Yeast Isolates , 1998, Journal of Clinical Microbiology.

[56]  Cellulose synthesis , 1998, Science.

[57]  T. G. Mitchell,et al.  Comparison of use of phenotypic and genotypic characteristics for identification of species of the anamorph genus Candida and related teleomorph yeast species , 1997, Journal of clinical microbiology.

[58]  C. Liao,et al.  The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation , 1996 .

[59]  P. Mayser,et al.  The yeast spectrum of the ‘tea fungus Kombucha’ , 1995, Mycoses.

[60]  J. Reiss Influence of different sugars on the metabolism of the tea fungus , 1994 .

[61]  L. Beuchat,et al.  Comparison of the SIM, API 20C, and ID 32C Systems for Identification of Yeasts Isolated from Fruit Juice Concentrates and Beverages. , 1993, Journal of food protection.

[62]  D. Claus,et al.  A standardized Gram staining procedure , 1992, World journal of microbiology & biotechnology.

[63]  J. Swings,et al.  Phenotypic identification of acetic acid bacteria , 1992 .

[64]  R. Goodacre,et al.  Identification Methods in Applied and Environmental Microbiology , 1992 .

[65]  B. Kirsop,et al.  A quick method for estimating the percentage of viable cells in a yeast population, using methylene blue staining , 1990, World journal of microbiology & biotechnology.

[66]  G. Fleet,et al.  Acetic Acid Bacteria in Winemaking: A Review , 1988, American Journal of Enology and Viticulture.

[67]  D. Mossel,et al.  The effect of properties of dried preparations of sulphide iron motility (SIM) agar on the results of motility readings , 1985 .

[68]  M. Cirigliano,et al.  A Selective Medium for the Isolation and Differentiation of Gluconobacter and Acetobacter , 1982 .

[69]  K. Kondo,et al.  ISOLATION AND CHARACTERIZATION OF "POLARLY FLAGELLATED INTERMEDIATE STRAINS" IN ACETIC ACID BACTERIA , 1976 .

[70]  H. Iizuka,et al.  THE FLAGELLATION AND TAXONOMY OF GENERA GLUCONOBACTER AND ACETOBACTER WITH REFERENCE TO THE EXISTENCE OF INTERMEDIATE STRAINS , 1964 .

[71]  C. Matthews On the Staining of Yeast Cells by Methylene Blue, etc. , 1914 .