Towards Computer-Assisted Flamenco Transcription: An Experimental Comparison of Automatic Transcription Algorithms as Applied to A Cappella Singing

This article deals with automatic transcription of flamenco music recordings—more specifically, a cappella singing. We first study the specifics of flamenco singing and propose a transcription system based on fundamental frequency and energy estimation, which incorporates an iterative strategy for note segmentation and labeling. The proposed approach is evaluated on a music collection of 72 performances, including a variety of singers and recording conditions, and the presence or absence of percussion, background voices, and noise. We obtain satisfying results for the different approaches tested, and our system outperforms a state-of-the-art approach designed for other singing styles. In this study, we discuss the difficulties found in transcribing flamenco singing and in evaluating the obtained transcriptions, we analyze the influence of the different steps of the algorithm, and we state the main limitations of our approach and discuss challenges for future studies.

[1]  M. Ruiz,et al.  Diccionario enciclopédico ilustrado del flamenco , 1988 .

[2]  Anssi Klapuri,et al.  Signal Processing Methods for Music Transcription , 2006 .

[3]  Emilia Gómez,et al.  Comparative Melodic Analysis of A Cappella Flamenco Cantes , 2008 .

[4]  Anssi Klapuri,et al.  Melody Description and Extraction in the Context of Music Content Processing , 2003 .

[5]  Philippe Donnier Flamenco: elementos para la transcripción del cante y de la guitarra , 1998 .

[6]  Jordi Bonada,et al.  Predominant Fundamental Frequency Estimation vs Singing Voice Separation for the Automatic Transcription of Accompanied Flamenco Singing , 2012, ISMIR.

[7]  George Tzanetakis,et al.  Computer-assisted cantillation and chant research using content-aware web visualization tools , 2009, Multimedia Tools and Applications.

[8]  Joren Six,et al.  Tarsos - a Platform to Explore Pitch Scales in Non-Western and Western Music , 2011, ISMIR.

[9]  Emilia Gómez,et al.  Automatic Detection of Ornamentation in Flamenco Music , 2011, NIPS 2011.

[10]  Rafael Hoces,et al.  La transcripción musical para guitarra flamenca: Análisis e implementación metodológica , 2011 .

[11]  J. Beauchamp,et al.  Fundamental frequency estimation of musical signals using a two‐way mismatch procedure , 1994 .

[12]  José Miguel Díaz-Báñez,et al.  Characterization and Similarity in A Cappella Flamenco Cantes , 2010, ISMIR.

[13]  Alfredo Rizzi,et al.  The chi-square test when the expected frequencies are less than 5 , 2006 .

[14]  R. Srinivasan,et al.  Identifying Indian Classical Music Styles using Melodic Contours , 2012 .

[15]  Hideki Kawahara,et al.  YIN, a fundamental frequency estimator for speech and music. , 2002, The Journal of the Acoustical Society of America.

[16]  Pedro Cano,et al.  Fundamental Frequency Estimation in the SMS analysis , 1998 .

[17]  Marc Leman,et al.  An auditory model based transriber of vocal queries , 2003, ISMIR.

[18]  Ali C. Gedik,et al.  Pitch-frequency histogram-based music information retrieval for Turkish music , 2010, Signal Process..

[19]  J. M. Gamboa,et al.  Una historia del flamenco , 2005 .

[20]  Keith Falconer Dom Jacques-Marie Guilmard. Tonaire des piéces de la messe selon le Graduale triplex et l' Offertoriale triplex . Etudes Grégoriennes, Subsidia Gregoriana, 2. Sablé-sur-Sarthe: Editions de l'Abbaye Saint-Pierre de Solesmes, 1990. , 1994, Plainsong and Medieval Music.

[21]  J. Sundberg,et al.  The Science of Singing Voice , 1987 .

[22]  Marc Leman,et al.  Methodological Considerations Concerning Manual Annotation Of Musical Audio In Function Of Algorithm Development , 2004, ISMIR.

[23]  C. C. Roldán,et al.  Antología Viva: Malagueña de D. Antonio Chacón y seguiriyas de Manuel Torre según las transcripciones de Antonio y David Hurtado Torres en "El arte de la escritura musical flamenca" , 2002 .

[24]  Petri Toiviainen,et al.  Visualization in comparative music research , 2006 .